Cargando…

Synthesis of 1,8-Naphthyridines by the Ionic Liquid-Catalyzed Friedlander Reaction and Application in Corrosion Inhibition

[Image: see text] A several of basic ionic liquids (ILs) were synthesized as green solvents and catalysts for the preparation of 1,8-naphthyridyl derivatives via the Friedlander reaction. [Bmmim][Im] exhibited remarkable catalytic activity to achieve the synthetic targets, and the reaction condition...

Descripción completa

Detalles Bibliográficos
Autores principales: San, Ying, Sun, Jian, Wang, Hong, Jin, Zhao-Hui, Gao, Hua-Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552317/
https://www.ncbi.nlm.nih.gov/pubmed/34723006
http://dx.doi.org/10.1021/acsomega.1c04103
Descripción
Sumario:[Image: see text] A several of basic ionic liquids (ILs) were synthesized as green solvents and catalysts for the preparation of 1,8-naphthyridyl derivatives via the Friedlander reaction. [Bmmim][Im] exhibited remarkable catalytic activity to achieve the synthetic targets, and the reaction conditions were optimized. The model product 2,3-diphenyl-1,8-naphthyridine (1,8-Nap), with carboxyethylthiosuccinic acid (CETSA) to form an IL corrosion inhibitor ([1,8-Nap][CETSA]), and its corrosion inhibition performance for Q235 steel in 1 M HCl were researched by weight loss measurements, and the results showed that the inhibition efficiency was 96.95% when the concentration of [1,8-Nap][CETSA] was 1 mM at 35 °C. The electrochemical test verified that [1,8-Nap][CETSA] acted as a mixed-type inhibitor but mainly exhibited cathodic behavior. The inhibitor adsorbed on the metal surface was further proved by surface topography analysis.