Cargando…
Knowledge-Embedded Message-Passing Neural Networks: Improving Molecular Property Prediction with Human Knowledge
[Image: see text] The graph neural network (GNN) has become a promising method to predict molecular properties with end-to-end supervision, as it can learn molecular features directly from chemical graphs in a black-box manner. However, to achieve high prediction accuracy, it is essential to supervi...
Autor principal: | Hasebe, Tatsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552328/ https://www.ncbi.nlm.nih.gov/pubmed/34722995 http://dx.doi.org/10.1021/acsomega.1c03839 |
Ejemplares similares
-
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction
por: Liu, Chengyou, et al.
Publicado: (2023) -
Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction
por: Withnall, M., et al.
Publicado: (2020) -
Predicting hERG channel blockers with directed message passing neural networks
por: Shan, Mengyi, et al.
Publicado: (2022) -
A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility
por: Tang, Bowen, et al.
Publicado: (2020)