Cargando…
Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
BACKGROUND AND PURPOSE: Reducing trismus in radiotherapy for head and neck cancer (HNC) is important. Automated deep learning (DL) segmentation and automated planning was used to introduce new and rarely segmented masticatory structures to study if trismus risk could be decreased. MATERIALS AND METH...
Autores principales: | Thor, Maria, Iyer, Aditi, Jiang, Jue, Apte, Aditya, Veeraraghavan, Harini, Allgood, Natasha B., Kouri, Jennifer A., Zhou, Ying, LoCastro, Eve, Elguindi, Sharif, Hong, Linda, Hunt, Margie, Cerviño, Laura, Aristophanous, Michalis, Zarepisheh, Masoud, Deasy, Joseph O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552336/ https://www.ncbi.nlm.nih.gov/pubmed/34746452 http://dx.doi.org/10.1016/j.phro.2021.07.009 |
Ejemplares similares
-
Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
por: Elguindi, Sharif, et al.
Publicado: (2019) -
Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone
por: Tixier, Florent, et al.
Publicado: (2019) -
Automatically tracking brain metastases after stereotactic radiosurgery
por: Hsu, Dylan G., et al.
Publicado: (2023) -
Simulating the Potential of Model-Based Individualized Prescriptions for Ultracentral Lung Tumors
por: Chen, Ishita, et al.
Publicado: (2023) -
Trismus
Publicado: (1828)