Cargando…

Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing

Tests to diagnose acute SARS-CoV-2 infection are at the center of controlling the COVID-19 pandemic. Rapid tests benefit from providing quick results but suffer from lower sensitivity, while PCR tests usually take longer to provide more reliable results and can be difficult to scale to meet populati...

Descripción completa

Detalles Bibliográficos
Autores principales: Realegeno, Susan, Hash, Sara, Wong, Charlene, Liu, Roland, Shepherd, Jovan, Schooley, Robert T., Lipson, David A., Fung, Frederick, Menon, Suresh, Pride, David T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552600/
https://www.ncbi.nlm.nih.gov/pubmed/34431687
http://dx.doi.org/10.1128/spectrum.00392-21
_version_ 1784591410245140480
author Realegeno, Susan
Hash, Sara
Wong, Charlene
Liu, Roland
Shepherd, Jovan
Schooley, Robert T.
Lipson, David A.
Fung, Frederick
Menon, Suresh
Pride, David T.
author_facet Realegeno, Susan
Hash, Sara
Wong, Charlene
Liu, Roland
Shepherd, Jovan
Schooley, Robert T.
Lipson, David A.
Fung, Frederick
Menon, Suresh
Pride, David T.
author_sort Realegeno, Susan
collection PubMed
description Tests to diagnose acute SARS-CoV-2 infection are at the center of controlling the COVID-19 pandemic. Rapid tests benefit from providing quick results but suffer from lower sensitivity, while PCR tests usually take longer to provide more reliable results and can be difficult to scale to meet population needs. We evaluated the diagnostic efficacy of a Molecular Mirror assay (MMA) using nucleic acid extraction and a nucleic acid extraction-free method to determine its ability to identify SARS-CoV-2 in nasal specimens from individuals suspected of having SARS-CoV-2. We compared the MMA using nucleic acid extraction to the emergency use authorization (EUA)-approved TaqPath reverse transcriptase PCR (RT-PCR) assay to determine its performance characteristics. From 412 total specimens (including 115 previous positives and 297 previous negatives), we found that the positive percent agreement (PPA) was 99.1% (confidence interval [CI], 97.4% to 100.0%) and the negative percent agreement (NPA) was 99.3% (95% CI, 98.4% to 100.0%) for SARS-CoV-2 detection. Using the extraction-free method, we analyzed 109 specimens (51 previous positives and 58 previous negatives) and found that the PPA for the more rapid version of the assay was 87.8% (95% CI, 78.5% to 96.9%) and the NPA was 100.0% (95% CI, 100.0%) for virus detection. The extraction method has performance comparable to what is observed in many PCR-based assays. The extraction-free method has lower PPA but has the advantage of being more rapid and having a higher throughput. Our data offer a proof of concept that nuclear magnetic resonance (NMR) detection can be used in SARS-CoV-2 diagnostic testing and may allow for alternative supply chains to increase testing options. IMPORTANCE Accurate diagnostics for SARS-CoV-2 infections have been critical for responding to the COVID-19 pandemic. Both high-sensitivity/specificity PCR-based tests and lower-sensitivity/specificity rapid antigen assays have been the subject of worldwide supply chain limitations as individual facilities and countries have struggled to meet their population testing needs. We evaluated the diagnostic efficacy of a Molecular Mirror assay (MMA), which uses nuclear magnetic resonance to detect the presence of SARS-CoV-2 nucleic acids both with and without full nucleic acid extractions. We found that compared to a U.S. emergency use authorization (EUA) approved assay (TaqPath) that uses reverse transcriptase PCR (RT-PCR), the MMA had high PPA and NPA with full nucleic acid extractions, and acceptable positive percent agreement (PPA) and negative percent agreement (NPA) with an extraction-free protocol. In a landscape marred by supply chain shortages across the world, altered SARS-CoV-2 detection methods such as the MMA can add to testing supplies while providing quality SARS-CoV-2 testing results.
format Online
Article
Text
id pubmed-8552600
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85526002021-11-08 Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing Realegeno, Susan Hash, Sara Wong, Charlene Liu, Roland Shepherd, Jovan Schooley, Robert T. Lipson, David A. Fung, Frederick Menon, Suresh Pride, David T. Microbiol Spectr Research Article Tests to diagnose acute SARS-CoV-2 infection are at the center of controlling the COVID-19 pandemic. Rapid tests benefit from providing quick results but suffer from lower sensitivity, while PCR tests usually take longer to provide more reliable results and can be difficult to scale to meet population needs. We evaluated the diagnostic efficacy of a Molecular Mirror assay (MMA) using nucleic acid extraction and a nucleic acid extraction-free method to determine its ability to identify SARS-CoV-2 in nasal specimens from individuals suspected of having SARS-CoV-2. We compared the MMA using nucleic acid extraction to the emergency use authorization (EUA)-approved TaqPath reverse transcriptase PCR (RT-PCR) assay to determine its performance characteristics. From 412 total specimens (including 115 previous positives and 297 previous negatives), we found that the positive percent agreement (PPA) was 99.1% (confidence interval [CI], 97.4% to 100.0%) and the negative percent agreement (NPA) was 99.3% (95% CI, 98.4% to 100.0%) for SARS-CoV-2 detection. Using the extraction-free method, we analyzed 109 specimens (51 previous positives and 58 previous negatives) and found that the PPA for the more rapid version of the assay was 87.8% (95% CI, 78.5% to 96.9%) and the NPA was 100.0% (95% CI, 100.0%) for virus detection. The extraction method has performance comparable to what is observed in many PCR-based assays. The extraction-free method has lower PPA but has the advantage of being more rapid and having a higher throughput. Our data offer a proof of concept that nuclear magnetic resonance (NMR) detection can be used in SARS-CoV-2 diagnostic testing and may allow for alternative supply chains to increase testing options. IMPORTANCE Accurate diagnostics for SARS-CoV-2 infections have been critical for responding to the COVID-19 pandemic. Both high-sensitivity/specificity PCR-based tests and lower-sensitivity/specificity rapid antigen assays have been the subject of worldwide supply chain limitations as individual facilities and countries have struggled to meet their population testing needs. We evaluated the diagnostic efficacy of a Molecular Mirror assay (MMA), which uses nuclear magnetic resonance to detect the presence of SARS-CoV-2 nucleic acids both with and without full nucleic acid extractions. We found that compared to a U.S. emergency use authorization (EUA) approved assay (TaqPath) that uses reverse transcriptase PCR (RT-PCR), the MMA had high PPA and NPA with full nucleic acid extractions, and acceptable positive percent agreement (PPA) and negative percent agreement (NPA) with an extraction-free protocol. In a landscape marred by supply chain shortages across the world, altered SARS-CoV-2 detection methods such as the MMA can add to testing supplies while providing quality SARS-CoV-2 testing results. American Society for Microbiology 2021-08-25 /pmc/articles/PMC8552600/ /pubmed/34431687 http://dx.doi.org/10.1128/spectrum.00392-21 Text en Copyright © 2021 Realegeno et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Realegeno, Susan
Hash, Sara
Wong, Charlene
Liu, Roland
Shepherd, Jovan
Schooley, Robert T.
Lipson, David A.
Fung, Frederick
Menon, Suresh
Pride, David T.
Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title_full Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title_fullStr Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title_full_unstemmed Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title_short Molecular Mirror Technology Facilitates High-Throughput, Accurate SARS-CoV-2 Testing
title_sort molecular mirror technology facilitates high-throughput, accurate sars-cov-2 testing
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552600/
https://www.ncbi.nlm.nih.gov/pubmed/34431687
http://dx.doi.org/10.1128/spectrum.00392-21
work_keys_str_mv AT realegenosusan molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT hashsara molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT wongcharlene molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT liuroland molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT shepherdjovan molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT schooleyrobertt molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT lipsondavida molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT fungfrederick molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT menonsuresh molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing
AT pridedavidt molecularmirrortechnologyfacilitateshighthroughputaccuratesarscov2testing