Cargando…

Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution

Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil sam...

Descripción completa

Detalles Bibliográficos
Autores principales: Fiedoruk, Krzysztof, Drewnowska, Justyna M., Mahillon, Jacques, Zambrzycka, Monika, Swiecicka, Izabela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552610/
https://www.ncbi.nlm.nih.gov/pubmed/34287030
http://dx.doi.org/10.1128/spectrum.00311-21
_version_ 1784591412987166720
author Fiedoruk, Krzysztof
Drewnowska, Justyna M.
Mahillon, Jacques
Zambrzycka, Monika
Swiecicka, Izabela
author_facet Fiedoruk, Krzysztof
Drewnowska, Justyna M.
Mahillon, Jacques
Zambrzycka, Monika
Swiecicka, Izabela
author_sort Fiedoruk, Krzysztof
collection PubMed
description Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.
format Online
Article
Text
id pubmed-8552610
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85526102021-11-08 Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution Fiedoruk, Krzysztof Drewnowska, Justyna M. Mahillon, Jacques Zambrzycka, Monika Swiecicka, Izabela Microbiol Spectr Research Article Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions. American Society for Microbiology 2021-07-21 /pmc/articles/PMC8552610/ /pubmed/34287030 http://dx.doi.org/10.1128/spectrum.00311-21 Text en Copyright © 2021 Fiedoruk et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Fiedoruk, Krzysztof
Drewnowska, Justyna M.
Mahillon, Jacques
Zambrzycka, Monika
Swiecicka, Izabela
Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title_full Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title_fullStr Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title_full_unstemmed Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title_short Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
title_sort pan-genome portrait of bacillus mycoides provides insights into the species ecology and evolution
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552610/
https://www.ncbi.nlm.nih.gov/pubmed/34287030
http://dx.doi.org/10.1128/spectrum.00311-21
work_keys_str_mv AT fiedorukkrzysztof pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution
AT drewnowskajustynam pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution
AT mahillonjacques pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution
AT zambrzyckamonika pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution
AT swiecickaizabela pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution