Cargando…
Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution
Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil sam...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552610/ https://www.ncbi.nlm.nih.gov/pubmed/34287030 http://dx.doi.org/10.1128/spectrum.00311-21 |
_version_ | 1784591412987166720 |
---|---|
author | Fiedoruk, Krzysztof Drewnowska, Justyna M. Mahillon, Jacques Zambrzycka, Monika Swiecicka, Izabela |
author_facet | Fiedoruk, Krzysztof Drewnowska, Justyna M. Mahillon, Jacques Zambrzycka, Monika Swiecicka, Izabela |
author_sort | Fiedoruk, Krzysztof |
collection | PubMed |
description | Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions. |
format | Online Article Text |
id | pubmed-8552610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85526102021-11-08 Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution Fiedoruk, Krzysztof Drewnowska, Justyna M. Mahillon, Jacques Zambrzycka, Monika Swiecicka, Izabela Microbiol Spectr Research Article Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions. American Society for Microbiology 2021-07-21 /pmc/articles/PMC8552610/ /pubmed/34287030 http://dx.doi.org/10.1128/spectrum.00311-21 Text en Copyright © 2021 Fiedoruk et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Fiedoruk, Krzysztof Drewnowska, Justyna M. Mahillon, Jacques Zambrzycka, Monika Swiecicka, Izabela Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title | Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title_full | Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title_fullStr | Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title_full_unstemmed | Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title_short | Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution |
title_sort | pan-genome portrait of bacillus mycoides provides insights into the species ecology and evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552610/ https://www.ncbi.nlm.nih.gov/pubmed/34287030 http://dx.doi.org/10.1128/spectrum.00311-21 |
work_keys_str_mv | AT fiedorukkrzysztof pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution AT drewnowskajustynam pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution AT mahillonjacques pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution AT zambrzyckamonika pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution AT swiecickaizabela pangenomeportraitofbacillusmycoidesprovidesinsightsintothespeciesecologyandevolution |