Cargando…
Facing the Challenges of Developing Fair Risk Scoring Models
Algorithmic scoring methods are widely used in the finance industry for several decades in order to prevent risk and to automate and optimize decisions. Regulatory requirements as given by the Basel Committee on Banking Supervision (BCBS) or the EU data protection regulations have led to an increasi...
Autores principales: | Szepannek, Gero, Lübke, Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552888/ https://www.ncbi.nlm.nih.gov/pubmed/34723172 http://dx.doi.org/10.3389/frai.2021.681915 |
Ejemplares similares
-
On Consequentialism and Fairness
por: Card, Dallas, et al.
Publicado: (2020) -
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
A United States Fair Lending Perspective on Machine Learning
por: Hall, Patrick, et al.
Publicado: (2021) -
Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review
por: Bozada, Thomas, et al.
Publicado: (2021) -
Research agenda for algorithmic fairness studies: Access to justice lessons for interdisciplinary research
por: Kontiainen, Laura, et al.
Publicado: (2022)