Cargando…
Evolving interpretable plasticity for spiking networks
Continuous adaptation allows survival in an ever-changing world. Adjustments in the synaptic coupling strength between neurons are essential for this capability, setting us apart from simpler, hard-wired organisms. How these changes can be mathematically described at the phenomenological level, as s...
Autores principales: | Jordan, Jakob, Schmidt, Maximilian, Senn, Walter, Petrovici, Mihai A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553337/ https://www.ncbi.nlm.nih.gov/pubmed/34709176 http://dx.doi.org/10.7554/eLife.66273 |
Ejemplares similares
-
Natural-gradient learning for spiking neurons
por: Kreutzer, Elena, et al.
Publicado: (2022) -
Learning cortical representations through perturbed and adversarial dreaming
por: Deperrois, Nicolas, et al.
Publicado: (2022) -
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Learning recurrent dynamics in spiking networks
por: Kim, Christopher M, et al.
Publicado: (2018) -
Modularity, criticality, and evolvability of a developmental gene regulatory network
por: Verd, Berta, et al.
Publicado: (2019)