Cargando…
A Deep Learning-Based Classification Method for Different Frequency EEG Data
In recent years, the research on electroencephalography (EEG) has focused on the feature extraction of EEG signals. The development of convenient and simple EEG acquisition devices has produced a variety of EEG signal sources and the diversity of the EEG data. Thus, the adaptability of EEG classific...
Autores principales: | Wen, Tingxi, Du, Yu, Pan, Ting, Huang, Chuanbo, Zhang, Zhongnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553488/ https://www.ncbi.nlm.nih.gov/pubmed/34721654 http://dx.doi.org/10.1155/2021/1972662 |
Ejemplares similares
-
Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification
por: Wen, Tingxi, et al.
Publicado: (2017) -
Deep learning-based transcriptome data classification for drug-target interaction prediction
por: Xie, Lingwei, et al.
Publicado: (2018) -
EEG Classification of Normal and Alcoholic by Deep Learning
por: Li, Houchi, et al.
Publicado: (2022) -
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021) -
A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram
por: Li, Chengfan, et al.
Publicado: (2022)