Cargando…

Role of Drug–Gene Interactions and Pharmacogenetics in Simvastatin-Associated Pulmonary Toxicity

INTRODUCTION: Simvastatin has previously been associated with drug-induced interstitial lung disease. In this retrospective observational study, cases with non-specific interstitial pneumonia (NSIP) or idiopathic pulmonary fibrosis (IPF) with simvastatin-associated pulmonary toxicity (n = 34) were e...

Descripción completa

Detalles Bibliográficos
Autores principales: Jessurun, Naomi T., Drent, Marjolein, Wijnen, Petal A., Harmsze, Ankie M., van Puijenbroek, Eugène P., Bekers, Otto, Bast, Aalt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553720/
https://www.ncbi.nlm.nih.gov/pubmed/34606062
http://dx.doi.org/10.1007/s40264-021-01105-8
Descripción
Sumario:INTRODUCTION: Simvastatin has previously been associated with drug-induced interstitial lung disease. In this retrospective observational study, cases with non-specific interstitial pneumonia (NSIP) or idiopathic pulmonary fibrosis (IPF) with simvastatin-associated pulmonary toxicity (n = 34) were evaluated. OBJECTIVE: To identify whether variations in genes encoding cytochrome P450 (CYP) enzymes or in the SLCO1B1 gene (Solute Carrier Organic anion transporting polypeptide 1B1 gene, encoding the organic anion transporting polypeptide 1B1 [OATP1B1] drug transporter enzyme), and/or characteristics of concomitantly used drugs, predispose patients to simvastatin-associated pulmonary toxicity. METHODS: Characteristics of concomitantly used drugs and/or variations in the CYP or SLCO1B1 genes and drug–gene interactions were assessed. The outcome after withdrawal of simvastatin and/or switch to another statin was assessed after 6 months. RESULTS: Multiple drug use involving either substrates and/or inhibitors of CYP3A4 and/or three or more drugs with the potential to cause acidosis explained the simvastatin-associated toxicity in 70.5% (n = 24) of cases. Cases did not differ significantly from controls regarding CYP3A4, CYP2C9, or OATP1B1 phenotypes, and genetic variation explained only 20.6% (n = 7) of cases. Withdrawal of simvastatin without switching to another statin or with a switch to a hydrophilic statin led to improvement or stabilization in all NSIP cases, whereas all cases who were switched to the lipophilic atorvastatin progressed. CONCLUSION: Simvastatin-associated pulmonary toxicity is multifactorial. For patients with this drug-induced pulmonary toxicity who need to continue taking a statin, switching to a hydrophilic statin should be considered. CLINICALTRIALS.GOV IDENTIFIER: NCT00267800, registered in 2005. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40264-021-01105-8.