Cargando…

Kinetics, energy efficiency and mathematical modeling of thin layer solar drying of figs (Ficus carica L.)

First convectional thin layer drying of two fig (Ficus carica L.) varieties growing in Morocco, using partially indirect convective dryer, was performed. The experimental design combined three air temperature levels (60, 70 and 80 °C) and two air-flow rates (150 and 300 m(3)/h). Fig drying curve was...

Descripción completa

Detalles Bibliográficos
Autores principales: Hssaini, Lahcen, Ouaabou, Rachida, Hanine, Hafida, Razouk, Rachid, Idlimam, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553925/
https://www.ncbi.nlm.nih.gov/pubmed/34711867
http://dx.doi.org/10.1038/s41598-021-00690-z
Descripción
Sumario:First convectional thin layer drying of two fig (Ficus carica L.) varieties growing in Morocco, using partially indirect convective dryer, was performed. The experimental design combined three air temperature levels (60, 70 and 80 °C) and two air-flow rates (150 and 300 m(3)/h). Fig drying curve was defined as a third-order polynomial equation linking the sample moisture content to the effective moisture diffusivity. The average activation energy ranged between 4699.41 and 7502.37 kJ/kg. It raised proportionally with the air flow velocity, and the same patterns were observed for effective moisture diffusivity regarding drying time and velocity. High levels of temperature (80 °C) and velocity (300 m(3)/h) lead to shorten drying time (200 min) and improve the slices physical quality. Among the nine tested models, Modified Handerson and Pabis exhibited the highest correlation coefficient value with the lowest chi-square for both varieties, and then give the best prediction performance. Energetic investigation of the dryer prototype showed that the total use of energy alongside with the specific energy utilization (13.12 and 44.55 MWh/kg) were inversely proportional to the velocity and drying temperature. Likewise, the energy efficiency was greater (3.98%) in drying conditions.