Cargando…
A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients
Background: Although numerous studies are conducted every year on how to reduce the fatality rate associated with sepsis, it is still a major challenge faced by patients, clinicians, and medical systems worldwide. Early identification and prediction of patients at risk of sepsis and adverse outcomes...
Autores principales: | Wang, Dong, Li, Jinbo, Sun, Yali, Ding, Xianfei, Zhang, Xiaojuan, Liu, Shaohua, Han, Bing, Wang, Haixu, Duan, Xiaoguang, Sun, Tongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553999/ https://www.ncbi.nlm.nih.gov/pubmed/34722452 http://dx.doi.org/10.3389/fpubh.2021.754348 |
Ejemplares similares
-
Analysis of mRNA‑lncRNA and mRNA‑lncRNA-pathway co‑expression networks based on WGCNA in developing pediatric sepsis
por: Zhang, Xiaojuan, et al.
Publicado: (2021) -
Effects of Gabexate Mesylate on the Gut Microbiota and Metabolomics in Rats with Sepsis
por: Sun, Wenju, et al.
Publicado: (2022) -
Positive Effects of Neutrophil Elastase Inhibitor (Sivelestat) on Gut Microbiome and Metabolite Profiles of Septic Rats
por: Sun, Yali, et al.
Publicado: (2022) -
Adjunctive sepsis therapy with aminophylline (STAP): a randomized controlled trial
por: Zhang, Ruifang, et al.
Publicado: (2022) -
Identification of Prognostic Factors in Patients With Streptococcus Bloodstream Infection
por: Duan, Xiaoguang, et al.
Publicado: (2022)