Cargando…
Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans
COVID-19 stay threatening the health infrastructure worldwide. Computed tomography (CT) was demonstrated as an informative tool for the recognition, quantification, and diagnosis of this kind of disease. It is urgent to design efficient deep learning (DL) approach to automatically localize and discr...
Autores principales: | Abdel-Basset, Mohamed, Hawash, Hossam, Moustafa, Nour, Elkomy, Osama M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554046/ https://www.ncbi.nlm.nih.gov/pubmed/34728870 http://dx.doi.org/10.1016/j.patrec.2021.10.027 |
Ejemplares similares
-
RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions
por: Ding, Weiping, et al.
Publicado: (2021) -
Automatic COVID-19 and Common-Acquired Pneumonia Diagnosis Using Chest CT Scans
por: Motta, Pedro Crosara, et al.
Publicado: (2023) -
MIC-Net: A deep network for cross-site segmentation of COVID-19 infection in the fog-assisted IoMT
por: Ding, Weiping, et al.
Publicado: (2023) -
Community-Acquired Pneumonia Visualized on CT Scans but Not Chest Radiographs: Pathogens, Severity, and Clinical Outcomes
por: Upchurch, Cameron P., et al.
Publicado: (2018) -
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
por: Abdel-Basset, Mohamed, et al.
Publicado: (2021)