Cargando…

Detection and analysis of common pathogenic germline mutations in Peutz-Jeghers syndrome

BACKGROUND: Different types of pathogenic mutations may produce different clinical phenotypes, but a correlation between Peutz-Jeghers syndrome (PJS) genotype and clinical phenotype has not been found. Not all patients with PJS have detectable mutations of the STK11/LKB1 gene, what is the genetic ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Guo-Li, Zhang, Zhi, Zhang, Yu-Hui, Yu, Peng-Fei, Dong, Zhi-Wei, Yang, Hai-Rui, Yuan, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554407/
https://www.ncbi.nlm.nih.gov/pubmed/34754157
http://dx.doi.org/10.3748/wjg.v27.i39.6631
Descripción
Sumario:BACKGROUND: Different types of pathogenic mutations may produce different clinical phenotypes, but a correlation between Peutz-Jeghers syndrome (PJS) genotype and clinical phenotype has not been found. Not all patients with PJS have detectable mutations of the STK11/LKB1 gene, what is the genetic basis of clinical phenotypic heterogeneity of PJS? Do PJS cases without STK11/LKB1 mutations have other pathogenic genes? Those are clinical problems that perplex doctors. AIM: The aim was to investigate the specific gene mutation of PJS, and the correlation between the genotype and clinical phenotype of PJS. METHODS: A total of 24 patients with PJS admitted to the Air Force Medical Center, PLA (formerly the Air Force General Hospital, PLA) from November 1994 to January 2020 were randomly selected for inclusion in the study. One hundred thirty-nine common hereditary tumor-related genes including STK11/LKB1 were screened and analyzed for pathogenic germline mutations by high-throughput next-generation sequencing (NGS). The mutation status of the genes and their relationship with clinical phenotypes of PJS were explored. RESULTS: Twenty of the 24 PJS patients in this group (83.3%) had STK11/LKB1 gene mutations, 90% of which were pathogenic mutations, and ten had new mutation sites. Pathogenic mutations in exon 7 of STK11/LKB1 gene were significantly lower than in other exons. Truncation mutations are more common in exons 1 and 4 of STK11/LKB1, and their pathogenicity was significantly higher than that of missense mutations. We also found SLX4 gene mutations in PJS patients. CONCLUSION: PJS has a relatively complicated genetic background. Changes in the sites responsible for coding functional proteins in exon 1 and exon 4 of STK11/LKB1 may be one of the main causes of PJS. Mutation of the SLX4 gene may be a cause of genetic heterogeneity in PJS.