Cargando…
Manipulating cellular microRNAs and analyzing high-dimensional gene expression data using machine learning workflows
MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554629/ https://www.ncbi.nlm.nih.gov/pubmed/34746868 http://dx.doi.org/10.1016/j.xpro.2021.100910 |
Sumario: | MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized techniques to validate the identified miRNAs through over-expression/loss-of-function studies. Overall, these protocols apply to any field in biology where high-dimensional data are produced. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021a). |
---|