Cargando…
Manipulating cellular microRNAs and analyzing high-dimensional gene expression data using machine learning workflows
MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized...
Autores principales: | Saini, Vijit, Joglekar, Mugdha V., Wong, Wilson K.M., Jiang, Guozhi, Nassif, Najah T., Simpson, Ann M., Ma, Ronald C.W., Dalgaard, Louise T., Hardikar, Anandwardhan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554629/ https://www.ncbi.nlm.nih.gov/pubmed/34746868 http://dx.doi.org/10.1016/j.xpro.2021.100910 |
Ejemplares similares
-
Directed differentiation into insulin-producing cells using microRNA manipulation
por: Williams, Michael D., et al.
Publicado: (2020) -
An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length
por: Joglekar, Mugdha V., et al.
Publicado: (2020) -
Circulating microRNAs: Understanding the Limits for Quantitative Measurement by Real‐Time PCR
por: Hardikar, Anandwardhan A., et al.
Publicado: (2014) -
Machine learning workflows identify a microRNA signature of insulin transcription in human tissues
por: Wong, Wilson K.M., et al.
Publicado: (2021) -
Levels of circulating insulin cell-free DNA in women with polycystic ovary syndrome – a longitudinal cohort study
por: Udesen, Pernille Bækgaard, et al.
Publicado: (2019)