Cargando…
iTTCA-RF: a random forest predictor for tumor T cell antigens
BACKGROUND: Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is o...
Autores principales: | Jiao, Shihu, Zou, Quan, Guo, Huannan, Shi, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554859/ https://www.ncbi.nlm.nih.gov/pubmed/34706730 http://dx.doi.org/10.1186/s12967-021-03084-x |
Ejemplares similares
-
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites
por: Lv, Zhibin, et al.
Publicado: (2020) -
TtcA a new tRNA-thioltransferase with an Fe-S cluster
por: Bouvier, Denis, et al.
Publicado: (2014) -
Role of Ttca of Citrobacter Werkmanii in Bacterial Growth, Biocides Resistance, Biofilm Formation and Swimming Motility
por: Zhou, Gang, et al.
Publicado: (2018) -
TTCA: an R package for the identification of differentially expressed genes in time course microarray data
por: Albrecht, Marco, et al.
Publicado: (2017)