Cargando…
A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks
BACKGROUND: Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554915/ https://www.ncbi.nlm.nih.gov/pubmed/34706640 http://dx.doi.org/10.1186/s12859-021-04447-3 |
_version_ | 1784591882214440960 |
---|---|
author | Hasibi, Ramin Michoel, Tom |
author_facet | Hasibi, Ramin Michoel, Tom |
author_sort | Hasibi, Ramin |
collection | PubMed |
description | BACKGROUND: Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experimental conditions. Integrating the complementary viewpoints of biological networks and omics data is an important task in bioinformatics, but existing methods treat networks as discrete structures, which are intrinsically difficult to integrate with continuous node features or activity measures. Graph neural networks map graph nodes into a low-dimensional vector space representation, and can be trained to preserve both the local graph structure and the similarity between node features. RESULTS: We studied the representation of transcriptional, protein–protein and genetic interaction networks in E. coli and mouse using graph neural networks. We found that such representations explain a large proportion of variation in gene expression data, and that using gene expression data as node features improves the reconstruction of the graph from the embedding. We further proposed a new end-to-end Graph Feature Auto-Encoder framework for the prediction of node features utilizing the structure of the gene networks, which is trained on the feature prediction task, and showed that it performs better at predicting unobserved node features than regular MultiLayer Perceptrons. When applied to the problem of imputing missing data in single-cell RNAseq data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called FeatGraphConv outperformed a state-of-the-art imputation method that does not use protein interaction information, showing the benefit of integrating biological networks and omics data with our proposed approach. CONCLUSION: Our proposed Graph Feature Auto-Encoder framework is a powerful approach for integrating and exploiting the close relation between molecular interaction networks and functional genomics data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04447-3. |
format | Online Article Text |
id | pubmed-8554915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85549152021-10-29 A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks Hasibi, Ramin Michoel, Tom BMC Bioinformatics Research BACKGROUND: Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experimental conditions. Integrating the complementary viewpoints of biological networks and omics data is an important task in bioinformatics, but existing methods treat networks as discrete structures, which are intrinsically difficult to integrate with continuous node features or activity measures. Graph neural networks map graph nodes into a low-dimensional vector space representation, and can be trained to preserve both the local graph structure and the similarity between node features. RESULTS: We studied the representation of transcriptional, protein–protein and genetic interaction networks in E. coli and mouse using graph neural networks. We found that such representations explain a large proportion of variation in gene expression data, and that using gene expression data as node features improves the reconstruction of the graph from the embedding. We further proposed a new end-to-end Graph Feature Auto-Encoder framework for the prediction of node features utilizing the structure of the gene networks, which is trained on the feature prediction task, and showed that it performs better at predicting unobserved node features than regular MultiLayer Perceptrons. When applied to the problem of imputing missing data in single-cell RNAseq data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called FeatGraphConv outperformed a state-of-the-art imputation method that does not use protein interaction information, showing the benefit of integrating biological networks and omics data with our proposed approach. CONCLUSION: Our proposed Graph Feature Auto-Encoder framework is a powerful approach for integrating and exploiting the close relation between molecular interaction networks and functional genomics data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04447-3. BioMed Central 2021-10-27 /pmc/articles/PMC8554915/ /pubmed/34706640 http://dx.doi.org/10.1186/s12859-021-04447-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Hasibi, Ramin Michoel, Tom A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title | A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title_full | A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title_fullStr | A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title_full_unstemmed | A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title_short | A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks |
title_sort | graph feature auto-encoder for the prediction of unobserved node features on biological networks |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554915/ https://www.ncbi.nlm.nih.gov/pubmed/34706640 http://dx.doi.org/10.1186/s12859-021-04447-3 |
work_keys_str_mv | AT hasibiramin agraphfeatureautoencoderforthepredictionofunobservednodefeaturesonbiologicalnetworks AT michoeltom agraphfeatureautoencoderforthepredictionofunobservednodefeaturesonbiologicalnetworks AT hasibiramin graphfeatureautoencoderforthepredictionofunobservednodefeaturesonbiologicalnetworks AT michoeltom graphfeatureautoencoderforthepredictionofunobservednodefeaturesonbiologicalnetworks |