Cargando…
A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks
BACKGROUND: Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experim...
Autores principales: | Hasibi, Ramin, Michoel, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554915/ https://www.ncbi.nlm.nih.gov/pubmed/34706640 http://dx.doi.org/10.1186/s12859-021-04447-3 |
Ejemplares similares
-
Predicting Pseudogene–miRNA Associations Based on Feature Fusion and Graph Auto-Encoder
por: Zhou, Shijia, et al.
Publicado: (2021) -
The versatility of multi-state models for the analysis of longitudinal data with unobservable features
por: Farewell, Vernon T., et al.
Publicado: (2012) -
Predicting weighted unobserved nodes in a regulatory network using answer set programming
por: Le Bars, Sophie, et al.
Publicado: (2023) -
Time-feature attention-based convolutional auto-encoder for flight feature extraction
por: Wang, Qixin, et al.
Publicado: (2023) -
Path-enhanced graph convolutional networks for node classification without features
por: Jiao, Qingju, et al.
Publicado: (2023)