Cargando…
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imag...
Autores principales: | Khodabakhshi, Zahra, Amini, Mehdi, Mostafaei, Shayan, Haddadi Avval, Atlas, Nazari, Mostafa, Oveisi, Mehrdad, Shiri, Isaac, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554934/ https://www.ncbi.nlm.nih.gov/pubmed/34382117 http://dx.doi.org/10.1007/s10278-021-00500-y |
Ejemplares similares
-
Myocardial Function Prediction After Coronary Artery Bypass Grafting Using MRI Radiomic Features and Machine Learning Algorithms
por: Arian, Fatemeh, et al.
Publicado: (2022) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition
por: Sabouri, Maziar, et al.
Publicado: (2022) -
Machine learning-based diagnosis and risk classification of coronary artery disease using myocardial perfusion imaging SPECT: A radiomics study
por: Amini, Mehdi, et al.
Publicado: (2023) -
Post-revascularization Ejection Fraction Prediction for Patients Undergoing Percutaneous Coronary Intervention Based on Myocardial Perfusion SPECT Imaging Radiomics: a Preliminary Machine Learning Study
por: Mohebi, Mobin, et al.
Publicado: (2023)