Cargando…

Using MALDI-TOF spectra in epidemiological surveillance for the detection of bacterial subgroups with a possible epidemic potential

BACKGROUND: For the purpose of epidemiological surveillance, the Hospital University Institute Méditerranée infection has implemented since 2013 a system named MIDaS, based on the systematic collection of routine activity materials, including MALDI-TOF spectra, and results. The objective of this pap...

Descripción completa

Detalles Bibliográficos
Autores principales: Giraud-Gatineau, Audrey, Texier, Gaetan, Fournier, Pierre-Edouard, Raoult, Didier, Chaudet, Hervé
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554970/
https://www.ncbi.nlm.nih.gov/pubmed/34711189
http://dx.doi.org/10.1186/s12879-021-06803-3
Descripción
Sumario:BACKGROUND: For the purpose of epidemiological surveillance, the Hospital University Institute Méditerranée infection has implemented since 2013 a system named MIDaS, based on the systematic collection of routine activity materials, including MALDI-TOF spectra, and results. The objective of this paper is to present the pipeline we use for processing MALDI-TOF spectra during epidemiological surveillance in order to disclose proteinic cues that may suggest the existence of epidemic processes in complement of incidence surveillance. It is illustrated by the analysis of an alarm observed for Streptococcus pneumoniae. METHODS: The MALDI-TOF spectra analysis process looks for the existence of clusters of spectra characterized by a double time and proteinic close proximity. This process relies on several specific methods aiming at contrasting and clustering the spectra, presenting graphically the results for an easy epidemiological interpretation, and for determining the discriminating spectra peaks with their possible identification using reference databases. RESULTS: The use of this pipeline in the case of an alarm issued for Streptococcus pneumoniae has made it possible to reveal a cluster of spectra with close proteinic and temporal distances, characterized by the presence of three discriminant peaks (5228.8, 5917.8, and 8974.3 m/z) and the absence of peak 4996.9 m/z. A further investigation on UniProt KB showed that peak 5228.8 is possibly an OxaA protein and that the absent peak may be a transposase. CONCLUSION: This example shows this pipeline may support a quasi-real time identification and characterization of clusters that provide essential information on a potentially epidemic situation. It brings valuable information for epidemiological sensemaking and for deciding on the continuation of the epidemiological investigation, in particular the involving of additional costly resources to confirm or invalidate the alarm. CLINICAL TRIALS REGISTRATION: NCT03626987. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-021-06803-3.