Cargando…
Using deep learning to classify pediatric posttraumatic stress disorder at the individual level
BACKGROUND: Children exposed to natural disasters are vulnerable to developing posttraumatic stress disorder (PTSD). Previous studies using resting-state functional neuroimaging have revealed alterations in graph-based brain topological network metrics in pediatric PTSD patients relative to healthy...
Autores principales: | Yang, Jing, Lei, Du, Qin, Kun, Pinaya, Walter H. L., Suo, Xueling, Li, Wenbin, Li, Lingjiang, Kemp, Graham J., Gong, Qiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555083/ https://www.ncbi.nlm.nih.gov/pubmed/34711200 http://dx.doi.org/10.1186/s12888-021-03503-9 |
Ejemplares similares
-
Psychoradiological abnormalities in treatment‐naive noncomorbid patients with posttraumatic stress disorder
por: Suo, Xueling, et al.
Publicado: (2021) -
Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level
por: Zhu, Ziyu, et al.
Publicado: (2021) -
Disrupted grey matter network morphology in pediatric posttraumatic stress disorder
por: Niu, Running, et al.
Publicado: (2018) -
Shared gray matter alterations in individuals with diverse behavioral addictions: A voxel-wise meta-analysis
por: Qin, Kun, et al.
Publicado: (2020) -
Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia
por: Lei, Du, et al.
Publicado: (2022)