Cargando…

Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer

BACKGROUND: Formalin-fixed paraffin embedded (FFPE) tissues may provide an exciting resource to study microbial associations in human disease, but the use of these low biomass specimens remains challenging. We aimed to reduce unintentional bacterial interference in molecular analysis of FFPE tissues...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Suk Yee, Ioannou, Athanasia, Konstanti, Prokopis, Visseren, Thijmen, Doukas, Michail, Peppelenbosch, Maikel Petrus, Belzer, Clara, Fuhler, Gwenny Manel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555202/
https://www.ncbi.nlm.nih.gov/pubmed/34715774
http://dx.doi.org/10.1186/s12866-021-02359-z
Descripción
Sumario:BACKGROUND: Formalin-fixed paraffin embedded (FFPE) tissues may provide an exciting resource to study microbial associations in human disease, but the use of these low biomass specimens remains challenging. We aimed to reduce unintentional bacterial interference in molecular analysis of FFPE tissues and investigated the feasibility of conducting quantitative polymerase chain reaction (qPCR) and 16S rRNA amplicon sequencing using 14 colorectal cancer, 14 normal adjacent and 13 healthy control tissues. RESULTS: Bacterial contaminants from the laboratory environment and the co-extraction of human DNA can affect bacterial analysis. The application of undiluted template improves bacterial DNA amplification, allowing the detection of specific bacterial markers (Escherichia coli and Faecalibacterium prausnitzii) by qPCR. Nested and non-nested PCR-based 16S rRNA amplicon sequencing approaches were employed, showing that bacterial communities of tissues and paired paraffin controls cluster separately at genus level on weighted Unifrac in both non-nested (R2 = 0.045; Pr(> F) = 0.053) and nested (R2 = 0.299; Pr(> F) = 0.001) PCR datasets. Nevertheless, considerable overlap of bacterial genera within tissues was seen with paraffin, DNA extraction negatives (non-nested PCR) or PCR negatives (nested PCR). Following mathematical decontamination, no differences in α- and β diversity were found between tumor, normal adjacent and control tissues. CONCLUSIONS: Bacterial marker analysis by qPCR seems feasible using non-normalized template, but 16S rRNA amplicon sequencing remains challenging. Critical evaluation of laboratory procedures and incorporation of positive and negative controls for bacterial analysis of FFPE tissues are essential for quality control and to account for bacterial contaminants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-021-02359-z.