Cargando…
adabmDCA: adaptive Boltzmann machine learning for biological sequences
BACKGROUND: Boltzmann machines are energy-based models that have been shown to provide an accurate statistical description of domains of evolutionary-related protein and RNA families. They are parametrized in terms of local biases accounting for residue conservation, and pairwise terms to model epis...
Autores principales: | Muntoni, Anna Paola, Pagnani, Andrea, Weigt, Martin, Zamponi, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555268/ https://www.ncbi.nlm.nih.gov/pubmed/34715775 http://dx.doi.org/10.1186/s12859-021-04441-9 |
Ejemplares similares
-
hoDCA: higher order direct-coupling analysis
por: Schmidt, Michael, et al.
Publicado: (2018) -
Efficient generative modeling of protein sequences using simple autoregressive models
por: Trinquier, Jeanne, et al.
Publicado: (2021) -
Author Correction: Efficient generative modeling of protein sequences using simple autoregressive models
por: Trinquier, Jeanne, et al.
Publicado: (2022) -
DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors
por: Muntoni, Anna Paola, et al.
Publicado: (2023) -
FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution
por: Muscat, Maureen, et al.
Publicado: (2020)