Cargando…
Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach
This study presents a data-driven machine learning approach to predict individual Galactic Cosmic Radiation (GCR) ion exposure for (4)He, (16)O, (28)Si, (48)Ti, or (56)Fe up to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET assay consists of a series of cognitive pe...
Autores principales: | Prelich, Matthew T., Matar, Mona, Gokoglu, Suleyman A., Gallo, Christopher A., Schepelmann, Alexander, Iqbal, Asad K., Lewandowski, Beth E., Britten, Richard A., Prabhu, R. K., Myers, Jerry G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555470/ https://www.ncbi.nlm.nih.gov/pubmed/34720896 http://dx.doi.org/10.3389/fnsys.2021.715433 |
Ejemplares similares
-
Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation
por: Matar, Mona, et al.
Publicado: (2021) -
Numerical characterization of astronaut CaOx renal stone incidence rates to quantify in-flight and post-flight relative risk
por: Goodenow-Messman, Debra A., et al.
Publicado: (2022) -
New Radiobiological Principles for the CNS Arising from Space Radiation Research
por: Britten, Richard A., et al.
Publicado: (2023) -
Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System
por: Tidmore, Alyssa, et al.
Publicado: (2021) -
Space wandering in the rodent default mode network
por: Nghiem, Trang-Anh Estelle, et al.
Publicado: (2023)