Cargando…
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
Accurate identification of the type of seizure is very important for the treatment plan and drug prescription of epileptic patients. Artificial intelligence has shown considerable potential in the fields of automated EEG analysis and seizure classification. However, the highly personalized represent...
Autores principales: | Cao, Xincheng, Yao, Bin, Chen, Binqiang, Sun, Weifang, Tan, Guowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555879/ https://www.ncbi.nlm.nih.gov/pubmed/34720869 http://dx.doi.org/10.3389/fnins.2021.760987 |
Ejemplares similares
-
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
por: Huang, Jing-Shan, et al.
Publicado: (2020) -
Seizure Prediction in EEG Signals Using STFT and Domain Adaptation
por: Peng, Peizhen, et al.
Publicado: (2022) -
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Invariant representations of mass in the human brain
por: Schwettmann, Sarah, et al.
Publicado: (2019)