Cargando…

Application of neural network to simulate the behavior of hospitalizations and their costs under the effects of various polluting gases in the city of São Paulo

This work aims to obtain an artificial neural network to simulate hospitalizations for respiratory diseases influenced by pollutant gaseous such as CO, PM(10), PM(2.5), NO(2), O(3), and SO(2) emitted from 2011 to 2017, in the city of São Paulo. The hospitalization costs were also be calculated. MLP...

Descripción completa

Detalles Bibliográficos
Autores principales: Miranda, Amanda Carvalho, Santana, José Carlos Curvelo, Yamamura, Charles Lincoln Kenji, Rosa, Jorge Marcos, Tambourgi, Elias Basile, Ho, Linda Lee, Berssaneti, Fernando Tobal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556003/
https://www.ncbi.nlm.nih.gov/pubmed/34745381
http://dx.doi.org/10.1007/s11869-021-01077-9
Descripción
Sumario:This work aims to obtain an artificial neural network to simulate hospitalizations for respiratory diseases influenced by pollutant gaseous such as CO, PM(10), PM(2.5), NO(2), O(3), and SO(2) emitted from 2011 to 2017, in the city of São Paulo. The hospitalization costs were also be calculated. MLP and RBF neural networks have been tested by varying the number of neurons in the hidden layer and the type of equation of the output function. The following pollutants and its concentration range were collected considering the supervision of Alto Tiete station set, in several neighborhoods in the city of São Paulo, from in the period 2011 to 2017: 28–63 µg/m(3) of PM(2.5), 52–110 µg/m(3) of PM(10), 49–135 µg/m(3) of O(3), 0.8–2.6 ppm CO, 41–98 µg/m(3) of NO(2), and 3–16 µg/m(3) of SO(2). Results showed that a RBF neural network with 6 input neurons, 13 hidden layer neurons, and 1 output neuron, using BFGS algorithm and a Gaussian function to neuronal activation, was the best fitted to the experimental datasets. So, knowing the monthly concentration of gaseous pollutions was possible to predict the hospitalization of 1464 to 3483 ± 510 patients, with costs between 570,447 and 1,357,151 ± 198,171 USD per month. This way, it is possible to use this neural network to predict the costs of hospitalizing patients for respiratory diseases and to contribute to the decision-making of how much the government should spend on health care.