Cargando…
Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unit-based logistic regression and geospatial statistics
Inventories of seismically induced landslides provide essential information about the extent and severity of ground effects after an earthquake. Rigorous assessment of the completeness of a landslide inventory and the quality of a landslide susceptibility map derived from the inventory is of paramou...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556321/ https://www.ncbi.nlm.nih.gov/pubmed/34716368 http://dx.doi.org/10.1038/s41598-021-00780-y |
Sumario: | Inventories of seismically induced landslides provide essential information about the extent and severity of ground effects after an earthquake. Rigorous assessment of the completeness of a landslide inventory and the quality of a landslide susceptibility map derived from the inventory is of paramount importance for disaster management applications. Methods and materials applied while preparing inventories influence their quality, but the criteria for generating an inventory are not standardized. This study considered five landslide inventories prepared by different authors after the 2015 Gorkha earthquake, to assess their differences, understand the implications of their use in producing landslide susceptibility maps in conjunction with standard landslide predisposing factors and logistic regression. We adopted three assessment criteria: (1) an error index to identify the mutual mismatches between the inventories; (2) statistical analysis, to study the inconsistency in predisposing factors and performance of susceptibility maps; and (3) geospatial analysis, to assess differences between the inventories and the corresponding susceptibility maps. Results show that substantial discrepancies exist among the mapped landslides. Although there is no distinct variation in the significance of landslide causative factors and the performance of susceptibility maps, a hot spot analysis and cluster/outlier analysis of the maps revealed notable differences in spatial patterns. The percentages of landslide-prone hot spots and clustered areas are directly proportional to the size of the landslide inventory. The proposed geospatial approaches provide a new perspective to the investigators for the quantitative analysis of earthquake-triggered landslide inventories and susceptibility maps. |
---|