Cargando…
3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of cli...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556326/ https://www.ncbi.nlm.nih.gov/pubmed/34716306 http://dx.doi.org/10.1038/s41467-021-26491-6 |
_version_ | 1784592155532066816 |
---|---|
author | Lei, Iek Man Jiang, Chen Lei, Chon Lok de Rijk, Simone Rosalie Tam, Yu Chuen Swords, Chloe Sutcliffe, Michael P. F. Malliaras, George G. Bance, Manohar Huang, Yan Yan Shery |
author_facet | Lei, Iek Man Jiang, Chen Lei, Chon Lok de Rijk, Simone Rosalie Tam, Yu Chuen Swords, Chloe Sutcliffe, Michael P. F. Malliaras, George G. Bance, Manohar Huang, Yan Yan Shery |
author_sort | Lei, Iek Man |
collection | PubMed |
description | Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients’ in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants. |
format | Online Article Text |
id | pubmed-8556326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85563262021-11-15 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients Lei, Iek Man Jiang, Chen Lei, Chon Lok de Rijk, Simone Rosalie Tam, Yu Chuen Swords, Chloe Sutcliffe, Michael P. F. Malliaras, George G. Bance, Manohar Huang, Yan Yan Shery Nat Commun Article Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients’ in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants. Nature Publishing Group UK 2021-10-29 /pmc/articles/PMC8556326/ /pubmed/34716306 http://dx.doi.org/10.1038/s41467-021-26491-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lei, Iek Man Jiang, Chen Lei, Chon Lok de Rijk, Simone Rosalie Tam, Yu Chuen Swords, Chloe Sutcliffe, Michael P. F. Malliaras, George G. Bance, Manohar Huang, Yan Yan Shery 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title_full | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title_fullStr | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title_full_unstemmed | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title_short | 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
title_sort | 3d printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556326/ https://www.ncbi.nlm.nih.gov/pubmed/34716306 http://dx.doi.org/10.1038/s41467-021-26491-6 |
work_keys_str_mv | AT leiiekman 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT jiangchen 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT leichonlok 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT derijksimonerosalie 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT tamyuchuen 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT swordschloe 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT sutcliffemichaelpf 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT malliarasgeorgeg 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT bancemanohar 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients AT huangyanyanshery 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients |