Cargando…

3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients

Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of cli...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Iek Man, Jiang, Chen, Lei, Chon Lok, de Rijk, Simone Rosalie, Tam, Yu Chuen, Swords, Chloe, Sutcliffe, Michael P. F., Malliaras, George G., Bance, Manohar, Huang, Yan Yan Shery
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556326/
https://www.ncbi.nlm.nih.gov/pubmed/34716306
http://dx.doi.org/10.1038/s41467-021-26491-6
_version_ 1784592155532066816
author Lei, Iek Man
Jiang, Chen
Lei, Chon Lok
de Rijk, Simone Rosalie
Tam, Yu Chuen
Swords, Chloe
Sutcliffe, Michael P. F.
Malliaras, George G.
Bance, Manohar
Huang, Yan Yan Shery
author_facet Lei, Iek Man
Jiang, Chen
Lei, Chon Lok
de Rijk, Simone Rosalie
Tam, Yu Chuen
Swords, Chloe
Sutcliffe, Michael P. F.
Malliaras, George G.
Bance, Manohar
Huang, Yan Yan Shery
author_sort Lei, Iek Man
collection PubMed
description Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients’ in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants.
format Online
Article
Text
id pubmed-8556326
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85563262021-11-15 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients Lei, Iek Man Jiang, Chen Lei, Chon Lok de Rijk, Simone Rosalie Tam, Yu Chuen Swords, Chloe Sutcliffe, Michael P. F. Malliaras, George G. Bance, Manohar Huang, Yan Yan Shery Nat Commun Article Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients’ in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants. Nature Publishing Group UK 2021-10-29 /pmc/articles/PMC8556326/ /pubmed/34716306 http://dx.doi.org/10.1038/s41467-021-26491-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lei, Iek Man
Jiang, Chen
Lei, Chon Lok
de Rijk, Simone Rosalie
Tam, Yu Chuen
Swords, Chloe
Sutcliffe, Michael P. F.
Malliaras, George G.
Bance, Manohar
Huang, Yan Yan Shery
3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title_full 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title_fullStr 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title_full_unstemmed 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title_short 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
title_sort 3d printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556326/
https://www.ncbi.nlm.nih.gov/pubmed/34716306
http://dx.doi.org/10.1038/s41467-021-26491-6
work_keys_str_mv AT leiiekman 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT jiangchen 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT leichonlok 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT derijksimonerosalie 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT tamyuchuen 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT swordschloe 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT sutcliffemichaelpf 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT malliarasgeorgeg 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT bancemanohar 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients
AT huangyanyanshery 3dprintedbiomimeticcochleaeandmachinelearningcomodellingprovidesclinicalinformaticsforcochlearimplantpatients