Cargando…
Objective comparison of methods to decode anomalous diffusion
Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the traj...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556353/ https://www.ncbi.nlm.nih.gov/pubmed/34716305 http://dx.doi.org/10.1038/s41467-021-26320-w |
_version_ | 1784592160159432704 |
---|---|
author | Muñoz-Gil, Gorka Volpe, Giovanni Garcia-March, Miguel Angel Aghion, Erez Argun, Aykut Hong, Chang Beom Bland, Tom Bo, Stefano Conejero, J. Alberto Firbas, Nicolás Garibo i Orts, Òscar Gentili, Alessia Huang, Zihan Jeon, Jae-Hyung Kabbech, Hélène Kim, Yeongjin Kowalek, Patrycja Krapf, Diego Loch-Olszewska, Hanna Lomholt, Michael A. Masson, Jean-Baptiste Meyer, Philipp G. Park, Seongyu Requena, Borja Smal, Ihor Song, Taegeun Szwabiński, Janusz Thapa, Samudrajit Verdier, Hippolyte Volpe, Giorgio Widera, Artur Lewenstein, Maciej Metzler, Ralf Manzo, Carlo |
author_facet | Muñoz-Gil, Gorka Volpe, Giovanni Garcia-March, Miguel Angel Aghion, Erez Argun, Aykut Hong, Chang Beom Bland, Tom Bo, Stefano Conejero, J. Alberto Firbas, Nicolás Garibo i Orts, Òscar Gentili, Alessia Huang, Zihan Jeon, Jae-Hyung Kabbech, Hélène Kim, Yeongjin Kowalek, Patrycja Krapf, Diego Loch-Olszewska, Hanna Lomholt, Michael A. Masson, Jean-Baptiste Meyer, Philipp G. Park, Seongyu Requena, Borja Smal, Ihor Song, Taegeun Szwabiński, Janusz Thapa, Samudrajit Verdier, Hippolyte Volpe, Giorgio Widera, Artur Lewenstein, Maciej Metzler, Ralf Manzo, Carlo |
author_sort | Muñoz-Gil, Gorka |
collection | PubMed |
description | Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers. |
format | Online Article Text |
id | pubmed-8556353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-85563532021-11-15 Objective comparison of methods to decode anomalous diffusion Muñoz-Gil, Gorka Volpe, Giovanni Garcia-March, Miguel Angel Aghion, Erez Argun, Aykut Hong, Chang Beom Bland, Tom Bo, Stefano Conejero, J. Alberto Firbas, Nicolás Garibo i Orts, Òscar Gentili, Alessia Huang, Zihan Jeon, Jae-Hyung Kabbech, Hélène Kim, Yeongjin Kowalek, Patrycja Krapf, Diego Loch-Olszewska, Hanna Lomholt, Michael A. Masson, Jean-Baptiste Meyer, Philipp G. Park, Seongyu Requena, Borja Smal, Ihor Song, Taegeun Szwabiński, Janusz Thapa, Samudrajit Verdier, Hippolyte Volpe, Giorgio Widera, Artur Lewenstein, Maciej Metzler, Ralf Manzo, Carlo Nat Commun Article Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers. Nature Publishing Group UK 2021-10-29 /pmc/articles/PMC8556353/ /pubmed/34716305 http://dx.doi.org/10.1038/s41467-021-26320-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Muñoz-Gil, Gorka Volpe, Giovanni Garcia-March, Miguel Angel Aghion, Erez Argun, Aykut Hong, Chang Beom Bland, Tom Bo, Stefano Conejero, J. Alberto Firbas, Nicolás Garibo i Orts, Òscar Gentili, Alessia Huang, Zihan Jeon, Jae-Hyung Kabbech, Hélène Kim, Yeongjin Kowalek, Patrycja Krapf, Diego Loch-Olszewska, Hanna Lomholt, Michael A. Masson, Jean-Baptiste Meyer, Philipp G. Park, Seongyu Requena, Borja Smal, Ihor Song, Taegeun Szwabiński, Janusz Thapa, Samudrajit Verdier, Hippolyte Volpe, Giorgio Widera, Artur Lewenstein, Maciej Metzler, Ralf Manzo, Carlo Objective comparison of methods to decode anomalous diffusion |
title | Objective comparison of methods to decode anomalous diffusion |
title_full | Objective comparison of methods to decode anomalous diffusion |
title_fullStr | Objective comparison of methods to decode anomalous diffusion |
title_full_unstemmed | Objective comparison of methods to decode anomalous diffusion |
title_short | Objective comparison of methods to decode anomalous diffusion |
title_sort | objective comparison of methods to decode anomalous diffusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556353/ https://www.ncbi.nlm.nih.gov/pubmed/34716305 http://dx.doi.org/10.1038/s41467-021-26320-w |
work_keys_str_mv | AT munozgilgorka objectivecomparisonofmethodstodecodeanomalousdiffusion AT volpegiovanni objectivecomparisonofmethodstodecodeanomalousdiffusion AT garciamarchmiguelangel objectivecomparisonofmethodstodecodeanomalousdiffusion AT aghionerez objectivecomparisonofmethodstodecodeanomalousdiffusion AT argunaykut objectivecomparisonofmethodstodecodeanomalousdiffusion AT hongchangbeom objectivecomparisonofmethodstodecodeanomalousdiffusion AT blandtom objectivecomparisonofmethodstodecodeanomalousdiffusion AT bostefano objectivecomparisonofmethodstodecodeanomalousdiffusion AT conejerojalberto objectivecomparisonofmethodstodecodeanomalousdiffusion AT firbasnicolas objectivecomparisonofmethodstodecodeanomalousdiffusion AT gariboiortsoscar objectivecomparisonofmethodstodecodeanomalousdiffusion AT gentilialessia objectivecomparisonofmethodstodecodeanomalousdiffusion AT huangzihan objectivecomparisonofmethodstodecodeanomalousdiffusion AT jeonjaehyung objectivecomparisonofmethodstodecodeanomalousdiffusion AT kabbechhelene objectivecomparisonofmethodstodecodeanomalousdiffusion AT kimyeongjin objectivecomparisonofmethodstodecodeanomalousdiffusion AT kowalekpatrycja objectivecomparisonofmethodstodecodeanomalousdiffusion AT krapfdiego objectivecomparisonofmethodstodecodeanomalousdiffusion AT locholszewskahanna objectivecomparisonofmethodstodecodeanomalousdiffusion AT lomholtmichaela objectivecomparisonofmethodstodecodeanomalousdiffusion AT massonjeanbaptiste objectivecomparisonofmethodstodecodeanomalousdiffusion AT meyerphilippg objectivecomparisonofmethodstodecodeanomalousdiffusion AT parkseongyu objectivecomparisonofmethodstodecodeanomalousdiffusion AT requenaborja objectivecomparisonofmethodstodecodeanomalousdiffusion AT smalihor objectivecomparisonofmethodstodecodeanomalousdiffusion AT songtaegeun objectivecomparisonofmethodstodecodeanomalousdiffusion AT szwabinskijanusz objectivecomparisonofmethodstodecodeanomalousdiffusion AT thapasamudrajit objectivecomparisonofmethodstodecodeanomalousdiffusion AT verdierhippolyte objectivecomparisonofmethodstodecodeanomalousdiffusion AT volpegiorgio objectivecomparisonofmethodstodecodeanomalousdiffusion AT wideraartur objectivecomparisonofmethodstodecodeanomalousdiffusion AT lewensteinmaciej objectivecomparisonofmethodstodecodeanomalousdiffusion AT metzlerralf objectivecomparisonofmethodstodecodeanomalousdiffusion AT manzocarlo objectivecomparisonofmethodstodecodeanomalousdiffusion |