Cargando…

Objective comparison of methods to decode anomalous diffusion

Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the traj...

Descripción completa

Detalles Bibliográficos
Autores principales: Muñoz-Gil, Gorka, Volpe, Giovanni, Garcia-March, Miguel Angel, Aghion, Erez, Argun, Aykut, Hong, Chang Beom, Bland, Tom, Bo, Stefano, Conejero, J. Alberto, Firbas, Nicolás, Garibo i Orts, Òscar, Gentili, Alessia, Huang, Zihan, Jeon, Jae-Hyung, Kabbech, Hélène, Kim, Yeongjin, Kowalek, Patrycja, Krapf, Diego, Loch-Olszewska, Hanna, Lomholt, Michael A., Masson, Jean-Baptiste, Meyer, Philipp G., Park, Seongyu, Requena, Borja, Smal, Ihor, Song, Taegeun, Szwabiński, Janusz, Thapa, Samudrajit, Verdier, Hippolyte, Volpe, Giorgio, Widera, Artur, Lewenstein, Maciej, Metzler, Ralf, Manzo, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556353/
https://www.ncbi.nlm.nih.gov/pubmed/34716305
http://dx.doi.org/10.1038/s41467-021-26320-w
_version_ 1784592160159432704
author Muñoz-Gil, Gorka
Volpe, Giovanni
Garcia-March, Miguel Angel
Aghion, Erez
Argun, Aykut
Hong, Chang Beom
Bland, Tom
Bo, Stefano
Conejero, J. Alberto
Firbas, Nicolás
Garibo i Orts, Òscar
Gentili, Alessia
Huang, Zihan
Jeon, Jae-Hyung
Kabbech, Hélène
Kim, Yeongjin
Kowalek, Patrycja
Krapf, Diego
Loch-Olszewska, Hanna
Lomholt, Michael A.
Masson, Jean-Baptiste
Meyer, Philipp G.
Park, Seongyu
Requena, Borja
Smal, Ihor
Song, Taegeun
Szwabiński, Janusz
Thapa, Samudrajit
Verdier, Hippolyte
Volpe, Giorgio
Widera, Artur
Lewenstein, Maciej
Metzler, Ralf
Manzo, Carlo
author_facet Muñoz-Gil, Gorka
Volpe, Giovanni
Garcia-March, Miguel Angel
Aghion, Erez
Argun, Aykut
Hong, Chang Beom
Bland, Tom
Bo, Stefano
Conejero, J. Alberto
Firbas, Nicolás
Garibo i Orts, Òscar
Gentili, Alessia
Huang, Zihan
Jeon, Jae-Hyung
Kabbech, Hélène
Kim, Yeongjin
Kowalek, Patrycja
Krapf, Diego
Loch-Olszewska, Hanna
Lomholt, Michael A.
Masson, Jean-Baptiste
Meyer, Philipp G.
Park, Seongyu
Requena, Borja
Smal, Ihor
Song, Taegeun
Szwabiński, Janusz
Thapa, Samudrajit
Verdier, Hippolyte
Volpe, Giorgio
Widera, Artur
Lewenstein, Maciej
Metzler, Ralf
Manzo, Carlo
author_sort Muñoz-Gil, Gorka
collection PubMed
description Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers.
format Online
Article
Text
id pubmed-8556353
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-85563532021-11-15 Objective comparison of methods to decode anomalous diffusion Muñoz-Gil, Gorka Volpe, Giovanni Garcia-March, Miguel Angel Aghion, Erez Argun, Aykut Hong, Chang Beom Bland, Tom Bo, Stefano Conejero, J. Alberto Firbas, Nicolás Garibo i Orts, Òscar Gentili, Alessia Huang, Zihan Jeon, Jae-Hyung Kabbech, Hélène Kim, Yeongjin Kowalek, Patrycja Krapf, Diego Loch-Olszewska, Hanna Lomholt, Michael A. Masson, Jean-Baptiste Meyer, Philipp G. Park, Seongyu Requena, Borja Smal, Ihor Song, Taegeun Szwabiński, Janusz Thapa, Samudrajit Verdier, Hippolyte Volpe, Giorgio Widera, Artur Lewenstein, Maciej Metzler, Ralf Manzo, Carlo Nat Commun Article Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers. Nature Publishing Group UK 2021-10-29 /pmc/articles/PMC8556353/ /pubmed/34716305 http://dx.doi.org/10.1038/s41467-021-26320-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Muñoz-Gil, Gorka
Volpe, Giovanni
Garcia-March, Miguel Angel
Aghion, Erez
Argun, Aykut
Hong, Chang Beom
Bland, Tom
Bo, Stefano
Conejero, J. Alberto
Firbas, Nicolás
Garibo i Orts, Òscar
Gentili, Alessia
Huang, Zihan
Jeon, Jae-Hyung
Kabbech, Hélène
Kim, Yeongjin
Kowalek, Patrycja
Krapf, Diego
Loch-Olszewska, Hanna
Lomholt, Michael A.
Masson, Jean-Baptiste
Meyer, Philipp G.
Park, Seongyu
Requena, Borja
Smal, Ihor
Song, Taegeun
Szwabiński, Janusz
Thapa, Samudrajit
Verdier, Hippolyte
Volpe, Giorgio
Widera, Artur
Lewenstein, Maciej
Metzler, Ralf
Manzo, Carlo
Objective comparison of methods to decode anomalous diffusion
title Objective comparison of methods to decode anomalous diffusion
title_full Objective comparison of methods to decode anomalous diffusion
title_fullStr Objective comparison of methods to decode anomalous diffusion
title_full_unstemmed Objective comparison of methods to decode anomalous diffusion
title_short Objective comparison of methods to decode anomalous diffusion
title_sort objective comparison of methods to decode anomalous diffusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556353/
https://www.ncbi.nlm.nih.gov/pubmed/34716305
http://dx.doi.org/10.1038/s41467-021-26320-w
work_keys_str_mv AT munozgilgorka objectivecomparisonofmethodstodecodeanomalousdiffusion
AT volpegiovanni objectivecomparisonofmethodstodecodeanomalousdiffusion
AT garciamarchmiguelangel objectivecomparisonofmethodstodecodeanomalousdiffusion
AT aghionerez objectivecomparisonofmethodstodecodeanomalousdiffusion
AT argunaykut objectivecomparisonofmethodstodecodeanomalousdiffusion
AT hongchangbeom objectivecomparisonofmethodstodecodeanomalousdiffusion
AT blandtom objectivecomparisonofmethodstodecodeanomalousdiffusion
AT bostefano objectivecomparisonofmethodstodecodeanomalousdiffusion
AT conejerojalberto objectivecomparisonofmethodstodecodeanomalousdiffusion
AT firbasnicolas objectivecomparisonofmethodstodecodeanomalousdiffusion
AT gariboiortsoscar objectivecomparisonofmethodstodecodeanomalousdiffusion
AT gentilialessia objectivecomparisonofmethodstodecodeanomalousdiffusion
AT huangzihan objectivecomparisonofmethodstodecodeanomalousdiffusion
AT jeonjaehyung objectivecomparisonofmethodstodecodeanomalousdiffusion
AT kabbechhelene objectivecomparisonofmethodstodecodeanomalousdiffusion
AT kimyeongjin objectivecomparisonofmethodstodecodeanomalousdiffusion
AT kowalekpatrycja objectivecomparisonofmethodstodecodeanomalousdiffusion
AT krapfdiego objectivecomparisonofmethodstodecodeanomalousdiffusion
AT locholszewskahanna objectivecomparisonofmethodstodecodeanomalousdiffusion
AT lomholtmichaela objectivecomparisonofmethodstodecodeanomalousdiffusion
AT massonjeanbaptiste objectivecomparisonofmethodstodecodeanomalousdiffusion
AT meyerphilippg objectivecomparisonofmethodstodecodeanomalousdiffusion
AT parkseongyu objectivecomparisonofmethodstodecodeanomalousdiffusion
AT requenaborja objectivecomparisonofmethodstodecodeanomalousdiffusion
AT smalihor objectivecomparisonofmethodstodecodeanomalousdiffusion
AT songtaegeun objectivecomparisonofmethodstodecodeanomalousdiffusion
AT szwabinskijanusz objectivecomparisonofmethodstodecodeanomalousdiffusion
AT thapasamudrajit objectivecomparisonofmethodstodecodeanomalousdiffusion
AT verdierhippolyte objectivecomparisonofmethodstodecodeanomalousdiffusion
AT volpegiorgio objectivecomparisonofmethodstodecodeanomalousdiffusion
AT wideraartur objectivecomparisonofmethodstodecodeanomalousdiffusion
AT lewensteinmaciej objectivecomparisonofmethodstodecodeanomalousdiffusion
AT metzlerralf objectivecomparisonofmethodstodecodeanomalousdiffusion
AT manzocarlo objectivecomparisonofmethodstodecodeanomalousdiffusion