Cargando…

The crucial role of lysine in the hepatic metabolism of growing Holstein dairy heifers as revealed by LC-MS-based untargeted metabolomics

The objective of this experiment was to evaluate the effect of supplementing rumen-protected Lys based on a Lys-deficient diet on liver metabolism in growing Holstein heifers. The experiment was conducted for 3 months with 36 Holstein heifers (initial body weight: 200 ± 9.0 kg; 7-month-old). Heifers...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Fanlin, Li, Yuan, Diao, Qiyu, Bi, Yanliang, Tu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556487/
https://www.ncbi.nlm.nih.gov/pubmed/34754957
http://dx.doi.org/10.1016/j.aninu.2021.10.001
Descripción
Sumario:The objective of this experiment was to evaluate the effect of supplementing rumen-protected Lys based on a Lys-deficient diet on liver metabolism in growing Holstein heifers. The experiment was conducted for 3 months with 36 Holstein heifers (initial body weight: 200 ± 9.0 kg; 7-month-old). Heifers were randomly assigned to 2 diets based on corn, soybean meal, alfalfa hay, and wheat bran: control, Lys-deficient diet (LD; 0.66% Lys in diet), and Lys-adequate diet (LA; 1.00% Lys in diet). The results showed no difference in growth performance between the 2 groups (P > 0.05). However, there was a clear trend of increasing feed conversion rate with Lys supplementation (0.05 < P < 0.01). The serum urea nitrogen concentration was significantly decreased, and the aspartate aminotransferase-to-alanine aminotransferase ratio was significantly decreased by Lys supplementation (P < 0.05). Moreover, growing heifers fed a Lys-adequate diet had lower levels of urine nitrogen excretion and higher levels of the biological value of nitrogen (P < 0.05). Metabolomic analysis revealed that 5 types of phosphatidylcholine and 3 types of ceramide were significantly increased and enriched in sphingolipid metabolism and glycerophospholipid metabolism (P < 0.05). His, Leu, and Asp levels were significantly decreased in the liver following Lys supplementation (P < 0.05). In conclusion, Lys supplementation may promote the synthesis of body tissue proteins, as evidenced by significantly decreased amino acids in the liver and urine N excretion, it also improves hepatic lipid metabolism by providing lipoprotein precursors.