Cargando…

Increased Depth, Reduced Extent, and Sharpened Edges of Visual Field Defects Measured by Compass Fundus Perimeter Compared to Humphrey Field Analyzer

PURPOSE: The purpose of this study was to compare visual field results of the COMPASS fundus perimeter (CMP) and the Humphrey Field Analyzer (HFA) in the same eyes; to compare structure-function concordance between circumpapillary retinal nerve fiber layer (Cp-RNFL) profiles and the two perimetry re...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ping, Nguyen, Bao N., Turpin, Andrew, McKendrick, Allison M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556560/
https://www.ncbi.nlm.nih.gov/pubmed/34694332
http://dx.doi.org/10.1167/tvst.10.12.33
Descripción
Sumario:PURPOSE: The purpose of this study was to compare visual field results of the COMPASS fundus perimeter (CMP) and the Humphrey Field Analyzer (HFA) in the same eyes; to compare structure-function concordance between circumpapillary retinal nerve fiber layer (Cp-RNFL) profiles and the two perimetry results; and to evaluate whether differences between the two results reflect postulated advantages of real-time eye movement compensation during perimetry. METHODS: We retrospectively analyzed 24-2 visual field data measured with CMP and HFA together with Cp-RNFL optical coherence tomography (OCT) scan data from 95 eyes of 65 people with glaucoma. We defined visual field locations with total deviation (TD) less than −5 dB as defective. The CMP and HFA fields were compared on measures of: spatial extent (number of defective locations); depth (TD values); and sharpness of scotomata edges (maximum TD difference between defective locations and their neighbors). Structure-function concordance between Cp-RNFL profile and respective visual field was also compared. RESULTS: Compared to the HFA, scotomata measured by CMP were of reduced spatial extent (mean difference = −3.14 locations, p < 0.001), greater depth (median TD of CMP = −17 dB versus HFA = −13 dB, p = 0.029) and steeper edges (median of maximum TD difference of CMP = 10.6 dB versus HFA = 6 dB, p < 0.001). Structure-function concordance between Cp-RNFL profile and either visual field were comparable despite the reduced scotoma spatial extent measured by CMP. CONCLUSIONS: Glaucomatous visual fields measured by CMP displayed characteristics consistent with expected effects of using real-time eye movement compensation technology compared to the widely used HFA. TRANSLATIONAL RELEVANCE: Glaucomatous visual field defects measured by the CMP are more localized, deeper, and steeper than those of the HFA.