Cargando…
Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community
BACKGROUND: Social media platforms, such as Twitter, are increasingly popular among communities of people with chronic conditions, including those with type 1 diabetes (T1D). There is some evidence that social media confers emotional and health-related benefits to people with T1D, including emotiona...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556640/ https://www.ncbi.nlm.nih.gov/pubmed/34652277 http://dx.doi.org/10.2196/30756 |
_version_ | 1784592210973425664 |
---|---|
author | Bedford-Petersen, Cianna Weston, Sara J |
author_facet | Bedford-Petersen, Cianna Weston, Sara J |
author_sort | Bedford-Petersen, Cianna |
collection | PubMed |
description | BACKGROUND: Social media platforms, such as Twitter, are increasingly popular among communities of people with chronic conditions, including those with type 1 diabetes (T1D). There is some evidence that social media confers emotional and health-related benefits to people with T1D, including emotional support and practical information regarding health maintenance. Research on social media has primarily relied on self-reports of web-based behavior and qualitative assessment of web-based content, which can be expensive and time-consuming. Meanwhile, recent advances in natural language processing have allowed for large-scale assessment of social media behavior. OBJECTIVE: This study attempts to document the major themes of Twitter posts using a natural language processing method to identify topics of interest in the T1D web-based community. We also seek to map social relations on Twitter as they relate to these topics of interest, to determine whether Twitter users in the T1D community post in “echo chambers,” which reflect their own topics back to them, or whether users typically see a mix of topics on the internet. METHODS: Through Twitter scraping, we gathered a data set of 691,691 tweets from 8557 accounts, spanning a date range from 2008 to 2020, which includes people with T1D, their caregivers, health practitioners, and advocates. Tweet content was analyzed for sentiment and topic, using Latent Dirichlet Allocation. We used social network analysis to examine the degree to which identified topics are siloed within specific groups or disseminated through the broader T1D web-based community. RESULTS: Tweets were, on average, positive in sentiment. Through topic modeling, we identified 6 broad-bandwidth topics, ranging from clinical to advocacy to daily management to emotional health, which can inform researchers and practitioners interested in the needs of people with T1D. These analyses also replicate prior work using machine learning methods to map social behavior on the internet. We extend these results through social network analysis, indicating that users are likely to see a mix of these topics discussed by the accounts they follow. CONCLUSIONS: Twitter communities are sources of information for people with T1D and members related to that community. Topics identified reveal key concerns of the T1D community and may be useful to practitioners and researchers alike. The methods used are efficient (low cost) while providing researchers with enormous amounts of data. We provide code to facilitate the use of these methods with other populations. |
format | Online Article Text |
id | pubmed-8556640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-85566402021-11-10 Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community Bedford-Petersen, Cianna Weston, Sara J JMIR Diabetes Original Paper BACKGROUND: Social media platforms, such as Twitter, are increasingly popular among communities of people with chronic conditions, including those with type 1 diabetes (T1D). There is some evidence that social media confers emotional and health-related benefits to people with T1D, including emotional support and practical information regarding health maintenance. Research on social media has primarily relied on self-reports of web-based behavior and qualitative assessment of web-based content, which can be expensive and time-consuming. Meanwhile, recent advances in natural language processing have allowed for large-scale assessment of social media behavior. OBJECTIVE: This study attempts to document the major themes of Twitter posts using a natural language processing method to identify topics of interest in the T1D web-based community. We also seek to map social relations on Twitter as they relate to these topics of interest, to determine whether Twitter users in the T1D community post in “echo chambers,” which reflect their own topics back to them, or whether users typically see a mix of topics on the internet. METHODS: Through Twitter scraping, we gathered a data set of 691,691 tweets from 8557 accounts, spanning a date range from 2008 to 2020, which includes people with T1D, their caregivers, health practitioners, and advocates. Tweet content was analyzed for sentiment and topic, using Latent Dirichlet Allocation. We used social network analysis to examine the degree to which identified topics are siloed within specific groups or disseminated through the broader T1D web-based community. RESULTS: Tweets were, on average, positive in sentiment. Through topic modeling, we identified 6 broad-bandwidth topics, ranging from clinical to advocacy to daily management to emotional health, which can inform researchers and practitioners interested in the needs of people with T1D. These analyses also replicate prior work using machine learning methods to map social behavior on the internet. We extend these results through social network analysis, indicating that users are likely to see a mix of these topics discussed by the accounts they follow. CONCLUSIONS: Twitter communities are sources of information for people with T1D and members related to that community. Topics identified reveal key concerns of the T1D community and may be useful to practitioners and researchers alike. The methods used are efficient (low cost) while providing researchers with enormous amounts of data. We provide code to facilitate the use of these methods with other populations. JMIR Publications 2021-10-15 /pmc/articles/PMC8556640/ /pubmed/34652277 http://dx.doi.org/10.2196/30756 Text en ©Cianna Bedford-Petersen, Sara J Weston. Originally published in JMIR Diabetes (https://diabetes.jmir.org), 15.10.2021. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Diabetes, is properly cited. The complete bibliographic information, a link to the original publication on https://diabetes.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Bedford-Petersen, Cianna Weston, Sara J Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title | Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title_full | Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title_fullStr | Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title_full_unstemmed | Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title_short | Mapping Individual Differences on the Internet: Case Study of the Type 1 Diabetes Community |
title_sort | mapping individual differences on the internet: case study of the type 1 diabetes community |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556640/ https://www.ncbi.nlm.nih.gov/pubmed/34652277 http://dx.doi.org/10.2196/30756 |
work_keys_str_mv | AT bedfordpetersencianna mappingindividualdifferencesontheinternetcasestudyofthetype1diabetescommunity AT westonsaraj mappingindividualdifferencesontheinternetcasestudyofthetype1diabetescommunity |