Cargando…
Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study
BACKGROUND: Data science offers an unparalleled opportunity to identify new insights into many aspects of human life with recent advances in health care. Using data science in digital health raises significant challenges regarding data privacy, transparency, and trustworthiness. Recent regulations e...
Autores principales: | Zuo, Zheming, Watson, Matthew, Budgen, David, Hall, Robert, Kennelly, Chris, Al Moubayed, Noura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556642/ https://www.ncbi.nlm.nih.gov/pubmed/34652278 http://dx.doi.org/10.2196/29871 |
Ejemplares similares
-
Improving Current Glycated Hemoglobin Prediction in Adults: Use of Machine Learning Algorithms With Electronic Health Records
por: Alhassan, Zakhriya, et al.
Publicado: (2021) -
Predicting Current Glycated Hemoglobin Levels in Adults From Electronic Health Records: Validation of Multiple Logistic Regression Algorithm
por: Alhassan, Zakhriya, et al.
Publicado: (2020) -
Using model explanations to guide deep learning models towards consistent explanations for EHR data
por: Watson, Matthew, et al.
Publicado: (2022) -
Author Correction: Using model explanations to guide deep learning models towards consistent explanations for EHR data
por: Watson, Matthew, et al.
Publicado: (2023) -
Open tools for quantitative anonymization of tabular phenotype data: literature review
por: Haber, Anna C, et al.
Publicado: (2022)