Cargando…
Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study
In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556648/ https://www.ncbi.nlm.nih.gov/pubmed/34754970 http://dx.doi.org/10.1016/j.heliyon.2021.e08204 |
_version_ | 1784592212199211008 |
---|---|
author | Medimagh, Mouna Issaoui, Noureddine Gatfaoui, Sofian Antonia Brandán, Silvia Al-Dossary, Omar Marouani, Houda J. Wojcik, Marek |
author_facet | Medimagh, Mouna Issaoui, Noureddine Gatfaoui, Sofian Antonia Brandán, Silvia Al-Dossary, Omar Marouani, Houda J. Wojcik, Marek |
author_sort | Medimagh, Mouna |
collection | PubMed |
description | In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and characterized by using the FT-IR spectrum while the optimized structures in gas phase and in ethanol and aqueous solutions have evidenced monodentate coordination between the nitrate and methylbenzylammonium groups, in agreement with that experimental determined for this species by X-ray diffraction. Here, non-covalent interactions were deeply analyzed in terms of topological parameters (AIM), electron localization function (ELF), localized orbital locator (LOL), Hirshfeld surface and reduced density gradient (RDG) method. Weak interactions such as H-bonds, VDW and steric effect in 4MBN were visualized and quantified by the independent gradient density (IGM) based on the promolecular density. The hyper-conjugative and the delocalization of charge in 4MBN have been elucidated by natural bonding orbital (NBO) while its chemical reactivity was studied and discussed by using molecular electrostatic potential surface (MESP), frontier molecular orbital (FMOs), density of state (DOS) and partial density of state (PDOS). The complete vibrational assignments of 69 vibration modes expected for 4MBN are reported together with the scaled force constants while the electronic transitions were evaluated by TD-DFT calculations in ethanol solution. Thermal analysis (DTA and DSC) was also determined. Molecular docking calculations have suggested that 4MBN presents biological activity and could act as a good inhibitor against schizophrenia disease. |
format | Online Article Text |
id | pubmed-8556648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-85566482021-11-08 Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study Medimagh, Mouna Issaoui, Noureddine Gatfaoui, Sofian Antonia Brandán, Silvia Al-Dossary, Omar Marouani, Houda J. Wojcik, Marek Heliyon Research Article In this research, the impact of non-covalent interactions on the FT-IR spectrum and structural, electronic, topological and vibrational properties of hybrid 4-methylbenzylammonium nitrate (4MBN) have been studied combining B3LYP/CC-PVTZ calculations with molecular docking. 4MBN was synthesized and characterized by using the FT-IR spectrum while the optimized structures in gas phase and in ethanol and aqueous solutions have evidenced monodentate coordination between the nitrate and methylbenzylammonium groups, in agreement with that experimental determined for this species by X-ray diffraction. Here, non-covalent interactions were deeply analyzed in terms of topological parameters (AIM), electron localization function (ELF), localized orbital locator (LOL), Hirshfeld surface and reduced density gradient (RDG) method. Weak interactions such as H-bonds, VDW and steric effect in 4MBN were visualized and quantified by the independent gradient density (IGM) based on the promolecular density. The hyper-conjugative and the delocalization of charge in 4MBN have been elucidated by natural bonding orbital (NBO) while its chemical reactivity was studied and discussed by using molecular electrostatic potential surface (MESP), frontier molecular orbital (FMOs), density of state (DOS) and partial density of state (PDOS). The complete vibrational assignments of 69 vibration modes expected for 4MBN are reported together with the scaled force constants while the electronic transitions were evaluated by TD-DFT calculations in ethanol solution. Thermal analysis (DTA and DSC) was also determined. Molecular docking calculations have suggested that 4MBN presents biological activity and could act as a good inhibitor against schizophrenia disease. Elsevier 2021-10-19 /pmc/articles/PMC8556648/ /pubmed/34754970 http://dx.doi.org/10.1016/j.heliyon.2021.e08204 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Medimagh, Mouna Issaoui, Noureddine Gatfaoui, Sofian Antonia Brandán, Silvia Al-Dossary, Omar Marouani, Houda J. Wojcik, Marek Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title | Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title_full | Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title_fullStr | Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title_full_unstemmed | Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title_short | Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study |
title_sort | impact of non-covalent interactions on ft-ir spectrum and properties of 4-methylbenzylammonium nitrate. a dft and molecular docking study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556648/ https://www.ncbi.nlm.nih.gov/pubmed/34754970 http://dx.doi.org/10.1016/j.heliyon.2021.e08204 |
work_keys_str_mv | AT medimaghmouna impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT issaouinoureddine impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT gatfaouisofian impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT antoniabrandansilvia impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT aldossaryomar impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT marouanihouda impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy AT jwojcikmarek impactofnoncovalentinteractionsonftirspectrumandpropertiesof4methylbenzylammoniumnitrateadftandmoleculardockingstudy |