Cargando…
A drug repositioning algorithm based on a deep autoencoder and adaptive fusion
BACKGROUND: Drug repositioning has caught the attention of scholars at home and abroad due to its effective reduction of the development cost and time of new drugs. However, existing drug repositioning methods that are based on computational analysis are limited by sparse data and classic fusion met...
Autores principales: | Chen, Peng, Bao, Tianjiazhi, Yu, Xiaosheng, Liu, Zhongtu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556784/ https://www.ncbi.nlm.nih.gov/pubmed/34717542 http://dx.doi.org/10.1186/s12859-021-04406-y |
Ejemplares similares
-
Drug repositioning based on heterogeneous networks and variational graph autoencoders
por: Lei, Song, et al.
Publicado: (2022) -
MULGA, a unified multi-view graph autoencoder-based approach for identifying drug–protein interaction and drug repositioning
por: Ma, Jiani, et al.
Publicado: (2023) -
Deep autoencoder based domain adaptation for transfer learning
por: Dev, Krishna, et al.
Publicado: (2022) -
DRPADC: A novel drug repositioning algorithm predicting adaptive drugs for COVID-19
por: Xie, Guobo, et al.
Publicado: (2022) -
Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network
por: Gao, Peng, et al.
Publicado: (2022)