Cargando…
A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade
Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and ease of synthesis. Though chemical and physical method...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556825/ https://www.ncbi.nlm.nih.gov/pubmed/34745812 http://dx.doi.org/10.1007/s13204-021-02135-5 |
Sumario: | Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and ease of synthesis. Though chemical and physical methods of fabricating AgNPs have been quite popular, they posed various environmental problems. As a result, the bioinspired route of AgNP synthesis emerged as the preferred pathway for synthesis. This review focuses extensively on the biosynthesis of AgNP-mediated through different plant species worldwide in the past 10 years. The most popularly utilized application areas have been highlighted with their in-depth mechanistic approach in this review, along with the discussion on the different phytochemicals playing an important role in the bio-reduction of silver ions. In addition to this, the environmental factors which govern their synthesis and stability have been reviewed. The paper systematically analyses the trend of research on AgNP biosynthesis throughout the world through bibliometric analysis. Apart from this, the feasibility analysis of the plant-mediated synthesis of nanoparticles and their applications have been intrigued considering the perspectives of engineering, economic, and environmental limitations. Thus, the review is not only a comprehensive summary of the achievements and current status of plant-mediated biosynthesis but also provides insight into emerging future research frontier. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13204-021-02135-5. |
---|