Cargando…
Improved Estimation of Bio-Oil Yield Based on Pyrolysis Conditions and Biomass Compositions Using GA- and PSO-ANFIS Models
This paper incorporates the adaptive neurofuzzy inference system (ANFIS) technique to model the yield of bio-oil. The estimation of this parameter was performed according to pyrolysis conditions and biomass compositions of feedstock. For this purpose, this paper innovates two optimization methods in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557077/ https://www.ncbi.nlm.nih.gov/pubmed/34725635 http://dx.doi.org/10.1155/2021/2204021 |
Sumario: | This paper incorporates the adaptive neurofuzzy inference system (ANFIS) technique to model the yield of bio-oil. The estimation of this parameter was performed according to pyrolysis conditions and biomass compositions of feedstock. For this purpose, this paper innovates two optimization methods including a genetic algorithm (GA) and particle swarm optimization (PSO). Primary data were gathered from previous studies and included 244 data of biodiesel oils. The findings showed a coefficient determination (R(2)) of 0.937 and RMSE of 2.1053 for the GA-ANFIS model, and a coefficient determination (R(2)) of 0.968 and RMSE of 1.4443 for PSO-ANFIS. This study indicates the capability of the PSO-ANFIS algorithm in the estimation of the bio-oil yield. According to the performed analysis, this model shows a higher ability than the previously presented models in predicting the target values and can be a suitable alternative to time-consuming and difficult experimental tests. |
---|