Cargando…
Is the Genetic Code Optimized for Resource Conservation?
The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase proteomic nitrogen and carbon uses under the SGC than under random...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557414/ https://www.ncbi.nlm.nih.gov/pubmed/34383940 http://dx.doi.org/10.1093/molbev/msab239 |
_version_ | 1784592367638020096 |
---|---|
author | Xu, Haiqing Zhang, Jianzhi |
author_facet | Xu, Haiqing Zhang, Jianzhi |
author_sort | Xu, Haiqing |
collection | PubMed |
description | The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase proteomic nitrogen and carbon uses under the SGC than under random genetic codes, concluding that the SGC has been selectively optimized for resource conservation. If true, this finding might offer important information on the environment in which the SGC and some of the earliest life forms evolved. However, we here show that the hypothesis of optimization of a genetic code for resource conservation is theoretically untenable. We discover that the aforementioned study estimated the expected mutational effect by inappropriately excluding mutations lowering resource consumptions and including mutations involving stop codons. After remedying these problems, we find no evidence that the SGC is optimized for nitrogen or carbon conservation. |
format | Online Article Text |
id | pubmed-8557414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-85574142021-11-01 Is the Genetic Code Optimized for Resource Conservation? Xu, Haiqing Zhang, Jianzhi Mol Biol Evol Discoveries The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase proteomic nitrogen and carbon uses under the SGC than under random genetic codes, concluding that the SGC has been selectively optimized for resource conservation. If true, this finding might offer important information on the environment in which the SGC and some of the earliest life forms evolved. However, we here show that the hypothesis of optimization of a genetic code for resource conservation is theoretically untenable. We discover that the aforementioned study estimated the expected mutational effect by inappropriately excluding mutations lowering resource consumptions and including mutations involving stop codons. After remedying these problems, we find no evidence that the SGC is optimized for nitrogen or carbon conservation. Oxford University Press 2021-08-12 /pmc/articles/PMC8557414/ /pubmed/34383940 http://dx.doi.org/10.1093/molbev/msab239 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Discoveries Xu, Haiqing Zhang, Jianzhi Is the Genetic Code Optimized for Resource Conservation? |
title | Is the Genetic Code Optimized for Resource Conservation? |
title_full | Is the Genetic Code Optimized for Resource Conservation? |
title_fullStr | Is the Genetic Code Optimized for Resource Conservation? |
title_full_unstemmed | Is the Genetic Code Optimized for Resource Conservation? |
title_short | Is the Genetic Code Optimized for Resource Conservation? |
title_sort | is the genetic code optimized for resource conservation? |
topic | Discoveries |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557414/ https://www.ncbi.nlm.nih.gov/pubmed/34383940 http://dx.doi.org/10.1093/molbev/msab239 |
work_keys_str_mv | AT xuhaiqing isthegeneticcodeoptimizedforresourceconservation AT zhangjianzhi isthegeneticcodeoptimizedforresourceconservation |