Cargando…

Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster

Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzi...

Descripción completa

Detalles Bibliográficos
Autores principales: Glaser-Schmitt, Amanda, Wittmann, Meike J, Ramnarine, Timothy J S, Parsch, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557461/
https://www.ncbi.nlm.nih.gov/pubmed/34289067
http://dx.doi.org/10.1093/molbev/msab215
_version_ 1784592376097931264
author Glaser-Schmitt, Amanda
Wittmann, Meike J
Ramnarine, Timothy J S
Parsch, John
author_facet Glaser-Schmitt, Amanda
Wittmann, Meike J
Ramnarine, Timothy J S
Parsch, John
author_sort Glaser-Schmitt, Amanda
collection PubMed
description Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzik. The derived variant at this site is at intermediate frequency in many worldwide populations but absent in populations from the ancestral species range in sub-Saharan Africa. We collected and genotyped wild-caught individuals from a single European population biannually over a period of 5 years, which revealed an overall difference in allele frequency between the sexes and a consistent change in allele frequency across seasons in females but not in males. Modeling based on the observed allele and genotype frequencies suggested that both sexually antagonistic and temporally fluctuating selection may help maintain variation at this site. The derived variant is predicted to be female-beneficial and mostly recessive; however, there was uncertainty surrounding our dominance estimates and long-term modeling projections suggest that it is more likely to be dominant. By examining gene expression phenotypes, we found that phenotypic dominance was variable and dependent upon developmental stage and genetic background, suggesting that dominance may be variable at this locus. We further determined that fezzik expression and genotype are associated with starvation resistance in a sex-dependent manner, suggesting a potential phenotypic target of selection. By characterizing the mechanisms of selection acting on this SNP, our results improve our understanding of how selection maintains genetic and phenotypic variation in natural populations.
format Online
Article
Text
id pubmed-8557461
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-85574612021-11-01 Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster Glaser-Schmitt, Amanda Wittmann, Meike J Ramnarine, Timothy J S Parsch, John Mol Biol Evol Discoveries Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzik. The derived variant at this site is at intermediate frequency in many worldwide populations but absent in populations from the ancestral species range in sub-Saharan Africa. We collected and genotyped wild-caught individuals from a single European population biannually over a period of 5 years, which revealed an overall difference in allele frequency between the sexes and a consistent change in allele frequency across seasons in females but not in males. Modeling based on the observed allele and genotype frequencies suggested that both sexually antagonistic and temporally fluctuating selection may help maintain variation at this site. The derived variant is predicted to be female-beneficial and mostly recessive; however, there was uncertainty surrounding our dominance estimates and long-term modeling projections suggest that it is more likely to be dominant. By examining gene expression phenotypes, we found that phenotypic dominance was variable and dependent upon developmental stage and genetic background, suggesting that dominance may be variable at this locus. We further determined that fezzik expression and genotype are associated with starvation resistance in a sex-dependent manner, suggesting a potential phenotypic target of selection. By characterizing the mechanisms of selection acting on this SNP, our results improve our understanding of how selection maintains genetic and phenotypic variation in natural populations. Oxford University Press 2021-07-21 /pmc/articles/PMC8557461/ /pubmed/34289067 http://dx.doi.org/10.1093/molbev/msab215 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Discoveries
Glaser-Schmitt, Amanda
Wittmann, Meike J
Ramnarine, Timothy J S
Parsch, John
Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title_full Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title_fullStr Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title_full_unstemmed Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title_short Sexual Antagonism, Temporally Fluctuating Selection, and Variable Dominance Affect a Regulatory Polymorphism in Drosophila melanogaster
title_sort sexual antagonism, temporally fluctuating selection, and variable dominance affect a regulatory polymorphism in drosophila melanogaster
topic Discoveries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557461/
https://www.ncbi.nlm.nih.gov/pubmed/34289067
http://dx.doi.org/10.1093/molbev/msab215
work_keys_str_mv AT glaserschmittamanda sexualantagonismtemporallyfluctuatingselectionandvariabledominanceaffectaregulatorypolymorphismindrosophilamelanogaster
AT wittmannmeikej sexualantagonismtemporallyfluctuatingselectionandvariabledominanceaffectaregulatorypolymorphismindrosophilamelanogaster
AT ramnarinetimothyjs sexualantagonismtemporallyfluctuatingselectionandvariabledominanceaffectaregulatorypolymorphismindrosophilamelanogaster
AT parschjohn sexualantagonismtemporallyfluctuatingselectionandvariabledominanceaffectaregulatorypolymorphismindrosophilamelanogaster