Cargando…
Evolutionary Sparse Learning for Phylogenomics
We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as evolutionary sparse learning (ESL). ESL builds models with genomic loci—such as genes, proteins, genomic segments, and positions—as parameters. Using the Least Absolute Shrinkage and Selec...
Autores principales: | Kumar, Sudhir, Sharma, Sudip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557465/ https://www.ncbi.nlm.nih.gov/pubmed/34343318 http://dx.doi.org/10.1093/molbev/msab227 |
Ejemplares similares
-
Taming the Selection of Optimal Substitution Models in Phylogenomics by Site Subsampling and Upsampling
por: Sharma, Sudip, et al.
Publicado: (2022) -
Tumors Are Evolutionary Island-Like Ecosystems
por: Chroni, Antonia, et al.
Publicado: (2021) -
A Practical Guide to Design and Assess a Phylogenomic Study
por: Lozano-Fernandez, Jesus
Publicado: (2022) -
Human genomic disease variants: A neutral evolutionary explanation
por: Dudley, Joel T., et al.
Publicado: (2012) -
Phylogenomics and Evolutionary Dynamics of the Family Actinomycetaceae
por: Zhao, Kelei, et al.
Publicado: (2014)