Cargando…
A deep learning quantified stroma-immune score to predict survival of patients with stage II–III colorectal cancer
BACKGROUND: Profound heterogeneity in prognosis has been observed in colorectal cancer (CRC) patients with intermediate levels of disease (stage II–III), advocating the identification of valuable biomarkers that could improve the prognostic stratification. This study aims to develop a deep learning-...
Autores principales: | Xu, Zeyan, Li, Yong, Wang, Yingyi, Zhang, Shenyan, Huang, Yanqi, Yao, Su, Han, Chu, Pan, Xipeng, Shi, Zhenwei, Mao, Yun, Xu, Yao, Huang, Xiaomei, Lin, Huan, Chen, Xin, Liang, Changhong, Li, Zhenhui, Zhao, Ke, Zhang, Qingling, Liu, Zaiyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557607/ https://www.ncbi.nlm.nih.gov/pubmed/34717647 http://dx.doi.org/10.1186/s12935-021-02297-w |
Ejemplares similares
-
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer
por: Zhao, Ke, et al.
Publicado: (2020) -
Prognostic value of a modified Immunoscore in patients with stage I−III resectable colon cancer
por: Zhao, Ke, et al.
Publicado: (2021) -
Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer
por: Yang, Jing, et al.
Publicado: (2022) -
The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study
por: Liang, Yanting, et al.
Publicado: (2021) -
Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images
por: Zhao, Ke, et al.
Publicado: (2021)