Cargando…
Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages
Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557907/ https://www.ncbi.nlm.nih.gov/pubmed/34585945 http://dx.doi.org/10.1128/Spectrum.00593-21 |
_version_ | 1784592451550314496 |
---|---|
author | Zhang, Dong He, Yiliang Gin, Karina Yew-Hoong |
author_facet | Zhang, Dong He, Yiliang Gin, Karina Yew-Hoong |
author_sort | Zhang, Dong |
collection | PubMed |
description | Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization of two novel lytic freshwater cyanophages isolated from a tropical inland lake in Singapore, namely, cyanopodovirus S-SRP01 and cyanomyovirus S-SRM01, infecting two different strains of Synechococcus spp. Functional annotation of S-SRP01 and S-SRM01 genomes revealed a high degree of homology with marine cyanophages. Phylogenetic trees of concatenated genes and whole-genome alignment provided further evidence that S-SRP01 is close evolutionarily to marine cyanopodoviruses, while S-SRM01 is evolutionarily close to marine cyanomyoviruses. Few genetic similarities between freshwater and marine cyanophages have been identified in previous studies. The isolation of S-SRP01 and S-SRM01 expand current knowledge on freshwater cyanophages infecting Synechococcus spp. Their high degree of gene sharing provides new insights into the evolutionary relationships between freshwater and marine cyanophages. This relatedness is further supported by the discovery of similar phenomenon from other freshwater viral metagenomes. IMPORTANCE This study expands the current knowledge on freshwater cyanophage isolates and cyanophage genetic diversity, indicating that freshwater and marine cyanophages infecting Synechococcus spp. may share close genetic similarity and evolutionary relationships. |
format | Online Article Text |
id | pubmed-8557907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-85579072021-11-08 Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages Zhang, Dong He, Yiliang Gin, Karina Yew-Hoong Microbiol Spectr Research Article Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization of two novel lytic freshwater cyanophages isolated from a tropical inland lake in Singapore, namely, cyanopodovirus S-SRP01 and cyanomyovirus S-SRM01, infecting two different strains of Synechococcus spp. Functional annotation of S-SRP01 and S-SRM01 genomes revealed a high degree of homology with marine cyanophages. Phylogenetic trees of concatenated genes and whole-genome alignment provided further evidence that S-SRP01 is close evolutionarily to marine cyanopodoviruses, while S-SRM01 is evolutionarily close to marine cyanomyoviruses. Few genetic similarities between freshwater and marine cyanophages have been identified in previous studies. The isolation of S-SRP01 and S-SRM01 expand current knowledge on freshwater cyanophages infecting Synechococcus spp. Their high degree of gene sharing provides new insights into the evolutionary relationships between freshwater and marine cyanophages. This relatedness is further supported by the discovery of similar phenomenon from other freshwater viral metagenomes. IMPORTANCE This study expands the current knowledge on freshwater cyanophage isolates and cyanophage genetic diversity, indicating that freshwater and marine cyanophages infecting Synechococcus spp. may share close genetic similarity and evolutionary relationships. American Society for Microbiology 2021-09-29 /pmc/articles/PMC8557907/ /pubmed/34585945 http://dx.doi.org/10.1128/Spectrum.00593-21 Text en Copyright © 2021 Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Zhang, Dong He, Yiliang Gin, Karina Yew-Hoong Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title | Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title_full | Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title_fullStr | Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title_full_unstemmed | Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title_short | Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages |
title_sort | novel freshwater cyanophages provide new insights into evolutionary relationships between freshwater and marine cyanophages |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557907/ https://www.ncbi.nlm.nih.gov/pubmed/34585945 http://dx.doi.org/10.1128/Spectrum.00593-21 |
work_keys_str_mv | AT zhangdong novelfreshwatercyanophagesprovidenewinsightsintoevolutionaryrelationshipsbetweenfreshwaterandmarinecyanophages AT heyiliang novelfreshwatercyanophagesprovidenewinsightsintoevolutionaryrelationshipsbetweenfreshwaterandmarinecyanophages AT ginkarinayewhoong novelfreshwatercyanophagesprovidenewinsightsintoevolutionaryrelationshipsbetweenfreshwaterandmarinecyanophages |