Cargando…

Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor

Geobacter sulfurreducens is commonly employed as a model for the study of extracellular electron transport mechanisms in the Geobacter species. Deletion of pilB, which is known to encode the pilus assembly motor protein for type IV pili in other bacteria, has been proposed as an effective strategy f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueki, Toshiyuki, Walker, David J. F., Nevin, Kelly P., Ward, Joy E., Woodard, Trevor L., Nonnenmann, Stephen S., Lovley, Derek R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557921/
https://www.ncbi.nlm.nih.gov/pubmed/34585977
http://dx.doi.org/10.1128/Spectrum.00877-21
_version_ 1784592455020052480
author Ueki, Toshiyuki
Walker, David J. F.
Nevin, Kelly P.
Ward, Joy E.
Woodard, Trevor L.
Nonnenmann, Stephen S.
Lovley, Derek R.
author_facet Ueki, Toshiyuki
Walker, David J. F.
Nevin, Kelly P.
Ward, Joy E.
Woodard, Trevor L.
Nonnenmann, Stephen S.
Lovley, Derek R.
author_sort Ueki, Toshiyuki
collection PubMed
description Geobacter sulfurreducens is commonly employed as a model for the study of extracellular electron transport mechanisms in the Geobacter species. Deletion of pilB, which is known to encode the pilus assembly motor protein for type IV pili in other bacteria, has been proposed as an effective strategy for evaluating the role of electrically conductive pili (e-pili) in G. sulfurreducens extracellular electron transfer. In those studies, the inhibition of e-pili expression associated with pilB deletion was not demonstrated directly but was inferred from the observation that pilB deletion mutants produced lower current densities than wild-type cells. Here, we report that deleting pilB did not diminish current production. Conducting probe atomic force microscopy revealed filaments with the same diameter and similar current-voltage response as e-pili harvested from wild-type G. sulfurreducens or when e-pili are expressed heterologously from the G. sulfurreducens pilin gene in Escherichia coli. Immunogold labeling demonstrated that a G. sulfurreducens strain expressing a pilin monomer with a His tag continued to express His tag-labeled filaments when pilB was deleted. These results suggest that a reinterpretation of the results of previous studies on G. sulfurreducens pilB deletion strains may be necessary. IMPORTANCE Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens. The results reported here demonstrate that we cannot replicate the key phenotype reported for a gene deletion that has been central to the development of models for long-range electron transport in G. sulfurreducens.
format Online
Article
Text
id pubmed-8557921
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85579212021-11-08 Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor Ueki, Toshiyuki Walker, David J. F. Nevin, Kelly P. Ward, Joy E. Woodard, Trevor L. Nonnenmann, Stephen S. Lovley, Derek R. Microbiol Spectr Research Article Geobacter sulfurreducens is commonly employed as a model for the study of extracellular electron transport mechanisms in the Geobacter species. Deletion of pilB, which is known to encode the pilus assembly motor protein for type IV pili in other bacteria, has been proposed as an effective strategy for evaluating the role of electrically conductive pili (e-pili) in G. sulfurreducens extracellular electron transfer. In those studies, the inhibition of e-pili expression associated with pilB deletion was not demonstrated directly but was inferred from the observation that pilB deletion mutants produced lower current densities than wild-type cells. Here, we report that deleting pilB did not diminish current production. Conducting probe atomic force microscopy revealed filaments with the same diameter and similar current-voltage response as e-pili harvested from wild-type G. sulfurreducens or when e-pili are expressed heterologously from the G. sulfurreducens pilin gene in Escherichia coli. Immunogold labeling demonstrated that a G. sulfurreducens strain expressing a pilin monomer with a His tag continued to express His tag-labeled filaments when pilB was deleted. These results suggest that a reinterpretation of the results of previous studies on G. sulfurreducens pilB deletion strains may be necessary. IMPORTANCE Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens. The results reported here demonstrate that we cannot replicate the key phenotype reported for a gene deletion that has been central to the development of models for long-range electron transport in G. sulfurreducens. American Society for Microbiology 2021-09-29 /pmc/articles/PMC8557921/ /pubmed/34585977 http://dx.doi.org/10.1128/Spectrum.00877-21 Text en Copyright © 2021 Ueki et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Ueki, Toshiyuki
Walker, David J. F.
Nevin, Kelly P.
Ward, Joy E.
Woodard, Trevor L.
Nonnenmann, Stephen S.
Lovley, Derek R.
Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title_full Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title_fullStr Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title_full_unstemmed Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title_short Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
title_sort generation of high current densities in geobacter sulfurreducens lacking the putative gene for the pilb pilus assembly motor
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557921/
https://www.ncbi.nlm.nih.gov/pubmed/34585977
http://dx.doi.org/10.1128/Spectrum.00877-21
work_keys_str_mv AT uekitoshiyuki generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT walkerdavidjf generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT nevinkellyp generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT wardjoye generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT woodardtrevorl generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT nonnenmannstephens generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor
AT lovleyderekr generationofhighcurrentdensitiesingeobactersulfurreducenslackingtheputativegeneforthepilbpilusassemblymotor