Cargando…

Regenerative medicine: characterization of human bone matrix gelatin (BMG) and folded platelet-rich fibrin (F-PRF) membranes alone and in combination (sticky bone)

During the last two decades autologous platelet and leukocyte rich products (PRP; PRF), opened new perspectives in regenerative medicine. In particular regenerative dentistry played a pioneer role in the application of these products in bone regenerative cases. Many aspects of cytokines, such as, gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Csönge, Lajos, Bozsik, Ágnes, Tóth-Bagi, Zoltán, Gyuris, Róbert, Kónya, János
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558196/
https://www.ncbi.nlm.nih.gov/pubmed/34061289
http://dx.doi.org/10.1007/s10561-021-09925-9
Descripción
Sumario:During the last two decades autologous platelet and leukocyte rich products (PRP; PRF), opened new perspectives in regenerative medicine. In particular regenerative dentistry played a pioneer role in the application of these products in bone regenerative cases. Many aspects of cytokines, such as, growth factor release, blood cell content and its characterization were reported, but some practical questions are still unanswered in the preparation of PRF membranes and sticky bones. A new folding technique was introduced that created a good quality, pliable, and strong F-PRF membrane with a dense fibrin network and more homogenous blood cell distribution. F-PRF produced a very promising sticky bone combined with human freeze-dried cortical bone matrix gelatin (BMG). There hasn’t been much focus on the quality and character of the applied bone and the optimal membrane/bone particle ratio has not been reported. A 0.125 g BMG/ml plasma (1 g/8 ml) seems like the ideal combination with maximal BMG adhesion capacity of the membrane. Particle distribution of BMG showed that 3/4 of the particles ranged between 300–1000 µ, the remnant 1/4 was smaller than 300 µ. The whole F-PRF membrane and its parts were compared with conventional A-PRF membrane concerning their resistance against proteolytic digestion. The F-PRF was superior to A-PRF, which dissolved within 4–5 days, while F-PRF was destroyed only after 11 days, so this provides a better chance for local bone morphogenesis. The F-PRF pieces had similar resistance to the whole intact one, so they can be ideal for surgical procedures without risk of fast disintegration.