Cargando…
Application of Machine Learning and Weighted Gene Co-expression Network Algorithm to Explore the Hub Genes in the Aging Brain
Aging is a major risk factor contributing to neurodegeneration and dementia. However, it remains unclarified how aging promotes these diseases. Here, we use machine learning and weighted gene co-expression network (WGCNA) to explore the relationship between aging and gene expression in the human fro...
Autores principales: | Chai, Keping, Liang, Jiawei, Zhang, Xiaolin, Cao, Panlong, Chen, Shufang, Gu, Huaqian, Ye, Weiping, Liu, Rong, Hu, Wenjun, Peng, Caixia, Liu, Gang Logan, Shen, Daojiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558222/ https://www.ncbi.nlm.nih.gov/pubmed/34733151 http://dx.doi.org/10.3389/fnagi.2021.707165 |
Ejemplares similares
-
Application of weighted co-expression network analysis and machine learning to identify the pathological mechanism of Alzheimer's disease
por: Chai, Keping, et al.
Publicado: (2022) -
Artificial intelligence and bioinformatics analyze markers of children's transcriptional genome to predict autism spectrum disorder
por: Tang, Huitao, et al.
Publicado: (2023) -
The Application of Consensus Weighted Gene Co-expression Network Analysis to Comparative Transcriptome Meta-Datasets of Multiple Sclerosis in Gray and White Matter
por: Chai, Keping, et al.
Publicado: (2022) -
Bioinformatic analysis reveals hub genes and pathways that promote melanoma metastasis
por: Su, Wenxing, et al.
Publicado: (2020) -
A nine-hub-gene signature of metabolic syndrome identified using machine learning algorithms and integrated bioinformatics
por: Liu, Guanzhi, et al.
Publicado: (2021)