Cargando…
Electroencephalogram Emotion Recognition Based on 3D Feature Fusion and Convolutional Autoencoder
As one of the key technologies of emotion computing, emotion recognition has received great attention. Electroencephalogram (EEG) signals are spontaneous and difficult to camouflage, so they are used for emotion recognition in academic and industrial circles. In order to overcome the disadvantage th...
Autores principales: | An, Yanling, Hu, Shaohai, Duan, Xiaoying, Zhao, Ling, Xie, Caiyun, Zhao, Yingying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558247/ https://www.ncbi.nlm.nih.gov/pubmed/34733148 http://dx.doi.org/10.3389/fncom.2021.743426 |
Ejemplares similares
-
The multiscale 3D convolutional network for emotion recognition based on electroencephalogram
por: Su, Yun, et al.
Publicado: (2022) -
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
por: Zhang, Pengwei, et al.
Publicado: (2021) -
Electroencephalogram signals emotion recognition based on convolutional neural network-recurrent neural network framework with channel-temporal attention mechanism for older adults
por: Jiang, Lei, et al.
Publicado: (2022) -
Electroencephalogram Access for Emotion Recognition Based on a Deep Hybrid Network
por: Zhong, Qinghua, et al.
Publicado: (2020) -
Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks
por: Li, Xiang, et al.
Publicado: (2020)