Cargando…
Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase
Convolutional Neural Networks (CNNs) are effective and mature in the field of classification, while Spiking Neural Networks (SNNs) are energy-saving for their sparsity of data flow and event-driven working mechanism. Previous work demonstrated that CNNs can be converted into equivalent Spiking Convo...
Autores principales: | Chen, Xuan, Yuan, Xiaopeng, Fu, Gaoming, Luo, Yuanyong, Yue, Tao, Yan, Feng, Wang, Yuxuan, Pan, Hongbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558256/ https://www.ncbi.nlm.nih.gov/pubmed/34733147 http://dx.doi.org/10.3389/fncom.2021.697469 |
Ejemplares similares
-
Neural spiking for causal inference and learning
por: Lansdell, Benjamin James, et al.
Publicado: (2023) -
Eclipse plug-ins
por: Clayberg, Eric, et al.
Publicado: (2009) -
Inferring oscillatory modulation in neural spike trains
por: Arai, Kensuke, et al.
Publicado: (2017) -
Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks
por: Xuan, Ping, et al.
Publicado: (2019) -
Inferring neural connectivity from multiple spike trains
por: Kim, Won Sup, et al.
Publicado: (2007)