Cargando…
A Review of Publicly Available Automatic Brain Segmentation Methodologies, Machine Learning Models, Recent Advancements, and Their Comparison
BACKGROUND: The noninvasive study of the structure and functions of the brain using neuroimaging techniques is increasingly being used for its clinical and research perspective. The morphological and volumetric changes in several regions and structures of brains are associated with the prognosis of...
Autores principales: | Singh, Mahender Kumar, Singh, Krishna Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558983/ https://www.ncbi.nlm.nih.gov/pubmed/34733059 http://dx.doi.org/10.1177/0972753121990175 |
Ejemplares similares
-
Reproducibility and Reliability of Computing Models in Segmentation and Volumetric Measurement of Brain
por: Singh, Mahender Kumar
Publicado: (2023) -
Recent advances in geriatric anaesthesia
por: Mahender, Anuradha, et al.
Publicado: (2023) -
Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries
por: Tillmanns, Niklas, et al.
Publicado: (2022) -
Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem
por: Wang, Jun Yi, et al.
Publicado: (2016) -
ACCT is a fast and accessible automatic cell counting tool using machine learning for 2D image segmentation
por: Kataras, Theodore J., et al.
Publicado: (2023)