Cargando…
Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography
Population averaged diffusion atlases can be utilized to characterize complex microstructural changes with less bias than data from individual subjects. In this study, a fetal diffusion tensor imaging (DTI) atlas was used to investigate tract‐based changes in anisotropy and diffusivity in vivo from...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559496/ https://www.ncbi.nlm.nih.gov/pubmed/34487404 http://dx.doi.org/10.1002/hbm.25653 |
_version_ | 1784592774220218368 |
---|---|
author | Machado‐Rivas, Fedel Afacan, Onur Khan, Shadab Marami, Bahram Velasco‐Annis, Clemente Lidov, Hart Warfield, Simon K. Gholipour, Ali Jaimes, Camilo |
author_facet | Machado‐Rivas, Fedel Afacan, Onur Khan, Shadab Marami, Bahram Velasco‐Annis, Clemente Lidov, Hart Warfield, Simon K. Gholipour, Ali Jaimes, Camilo |
author_sort | Machado‐Rivas, Fedel |
collection | PubMed |
description | Population averaged diffusion atlases can be utilized to characterize complex microstructural changes with less bias than data from individual subjects. In this study, a fetal diffusion tensor imaging (DTI) atlas was used to investigate tract‐based changes in anisotropy and diffusivity in vivo from 23 to 38 weeks of gestational age (GA). Healthy pregnant volunteers with typically developing fetuses were imaged at 3 T. Acquisition included structural images processed with a super‐resolution algorithm and DTI images processed with a motion‐tracked slice‐to‐volume registration algorithm. The DTI from individual subjects were used to generate 16 templates, each specific to a week of GA; this was accomplished by means of a tensor‐to‐tensor diffeomorphic deformable registration method integrated with kernel regression in age. Deterministic tractography was performed to outline the forceps major, forceps minor, bilateral corticospinal tracts (CST), bilateral inferior fronto‐occipital fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF), and bilateral uncinate fasciculus (UF). The mean fractional anisotropy (FA) and mean diffusivity (MD) was recorded for all tracts. For a subset of tracts (forceps major, CST, and IFOF) we manually divided the tractograms into anatomy conforming segments to evaluate within‐tract changes. We found tract‐specific, nonlinear, age related changes in FA and MD. Early in gestation, these trends appear to be dominated by cytoarchitectonic changes in the transient white matter fetal zones while later in gestation, trends conforming to the progression of myelination were observed. We also observed significant (local) heterogeneity in within‐tract developmental trajectories for the CST, IFOF, and forceps major. |
format | Online Article Text |
id | pubmed-8559496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85594962021-11-08 Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography Machado‐Rivas, Fedel Afacan, Onur Khan, Shadab Marami, Bahram Velasco‐Annis, Clemente Lidov, Hart Warfield, Simon K. Gholipour, Ali Jaimes, Camilo Hum Brain Mapp Research Articles Population averaged diffusion atlases can be utilized to characterize complex microstructural changes with less bias than data from individual subjects. In this study, a fetal diffusion tensor imaging (DTI) atlas was used to investigate tract‐based changes in anisotropy and diffusivity in vivo from 23 to 38 weeks of gestational age (GA). Healthy pregnant volunteers with typically developing fetuses were imaged at 3 T. Acquisition included structural images processed with a super‐resolution algorithm and DTI images processed with a motion‐tracked slice‐to‐volume registration algorithm. The DTI from individual subjects were used to generate 16 templates, each specific to a week of GA; this was accomplished by means of a tensor‐to‐tensor diffeomorphic deformable registration method integrated with kernel regression in age. Deterministic tractography was performed to outline the forceps major, forceps minor, bilateral corticospinal tracts (CST), bilateral inferior fronto‐occipital fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF), and bilateral uncinate fasciculus (UF). The mean fractional anisotropy (FA) and mean diffusivity (MD) was recorded for all tracts. For a subset of tracts (forceps major, CST, and IFOF) we manually divided the tractograms into anatomy conforming segments to evaluate within‐tract changes. We found tract‐specific, nonlinear, age related changes in FA and MD. Early in gestation, these trends appear to be dominated by cytoarchitectonic changes in the transient white matter fetal zones while later in gestation, trends conforming to the progression of myelination were observed. We also observed significant (local) heterogeneity in within‐tract developmental trajectories for the CST, IFOF, and forceps major. John Wiley & Sons, Inc. 2021-09-06 /pmc/articles/PMC8559496/ /pubmed/34487404 http://dx.doi.org/10.1002/hbm.25653 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Machado‐Rivas, Fedel Afacan, Onur Khan, Shadab Marami, Bahram Velasco‐Annis, Clemente Lidov, Hart Warfield, Simon K. Gholipour, Ali Jaimes, Camilo Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title | Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title_full | Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title_fullStr | Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title_full_unstemmed | Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title_short | Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
title_sort | spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559496/ https://www.ncbi.nlm.nih.gov/pubmed/34487404 http://dx.doi.org/10.1002/hbm.25653 |
work_keys_str_mv | AT machadorivasfedel spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT afacanonur spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT khanshadab spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT maramibahram spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT velascoannisclemente spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT lidovhart spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT warfieldsimonk spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT gholipourali spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography AT jaimescamilo spatiotemporalchangesindiffusivityandanisotropyinfetalbraintractography |