Cargando…
Accurate Tumor Delineation vs. Rough Volume of Interest Analysis for (18)F-FDG PET/CT Radiomics-Based Prognostic Modeling inNon-Small Cell Lung Cancer
BACKGROUND: The aim of this work was to investigate the ability of building prognostic models in non-small cell lung cancer (NSCLC) using radiomic features from positron emission tomography and computed tomography with 2-deoxy-2-[fluorine-18]fluoro-d-glucose ((18)F-FDG PET/CT) images based on a “rou...
Autores principales: | Sepehri, Shima, Tankyevych, Olena, Iantsen, Andrei, Visvikis, Dimitris, Hatt, Mathieu, Cheze Le Rest, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560021/ https://www.ncbi.nlm.nih.gov/pubmed/34733779 http://dx.doi.org/10.3389/fonc.2021.726865 |
Ejemplares similares
-
Comparison and Fusion of Machine Learning Algorithms for Prospective Validation of PET/CT Radiomic Features Prognostic Value in Stage II-III Non-Small Cell Lung Cancer
por: Sepehri, Shima, et al.
Publicado: (2021) -
Correlation of Intra-Tumor (18)F-FDG Uptake Heterogeneity Indices with Perfusion CT Derived Parameters in Colorectal Cancer
por: Tixier, Florent, et al.
Publicado: (2014) -
Revisiting the identification of tumor sub-volumes predictive of residual uptake after (chemo)radiotherapy: influence of segmentation methods on (18)F-FDG PET/CT images
por: Hatt, Mathieu, et al.
Publicado: (2019) -
FDG PET/CT for rectal carcinoma radiotherapy treatment planning: comparison of functional volume delineation algorithms and clinical challenges
por: Withofs, Nadia, et al.
Publicado: (2014) -
Transcriptomics in cancer revealed by Positron Emission Tomography radiomics
por: Tixier, Florent, et al.
Publicado: (2020)